Esempio n. 1
0
def pyNCcomputeTestSet(cnstfile1,
                       saefile1,
                       nnfdir1,
                       dtdir,
                       dtdftpref,
                       dtpm6dir,
                       dtpm6pref,
                       N,
                       P=1.0):
    # Construct pyNeuroChem classes
    nc = pync.pyNeuroChem(cnstfile1, saefile1, nnfdir1, 0)

    Eact = []
    Ecmp = []
    Eotr = []
    Ndat = 0
    Nmol = 0
    t = 0.0
    for i in range(0, N):
        print('|----- File ' + str(i) + ' -----|')
        print('Name: ' + dtdir + dtdftpref + str(i) + '_test.dat')

        rv = bool(np.random.binomial(1, P))
        if (os.path.isfile(dtdir + dtdftpref + str(i) + '_test.dat') and rv):

            xyz, typ, Eact_t = gt.readncdat(dtdir + dtdftpref + str(i) +
                                            '_test.dat')
            xyz1, typ1, Eotr_t = gt.readncdat(dtpm6dir + dtpm6pref + str(i) +
                                              '_test.dat')

            if len(Eact_t) == len(Eotr_t):

                Eact += shiftlsttomin(Eact_t)
                Eotr += shiftlsttomin(Eotr_t)

                #Eact +=  Eact_t
                #Eotr +=  Eotr_t

                Nmol += 1
                Ndat += len(Eact_t)

                # Set the conformers in NeuroChem
                nc.setConformers(confs=xyz, types=typ)

                # Compute Forces of Conformations
                print('Computing energies 1...')
                _t1b = tm.time()
                Ecmp_t = nc.computeEnergies()
                _t2b = (tm.time() - _t1b) * 1000.0
                t += _t2b
                print('Computation complete 1. Time: ' +
                      "{:.4f}".format(_t2b) + 'ms')
                Ecmp += shiftlsttomin(Ecmp_t)
                #Ecmp +=  Ecmp_t

    Eact = np.array(Eact, dtype=float)
    Eotr = np.array(Eotr, dtype=float)
    Ecmp = np.array(Ecmp, dtype=float)

    return Eact, Ecmp, Eotr, Ndat, Nmol, t
def pyNCcomputeTestSet(cnstfile1,saefile1,nnfdir1,dtdir,dtdftpref,dtpm6dir,dtpm6pref,N,P=1.0):
    # Construct pyNeuroChem classes
    nc = pync.pyNeuroChem(cnstfile1,saefile1,nnfdir1,0)

    Eact = []
    Ecmp = []
    Eotr = []
    Ndat = 0
    Nmol = 0
    t = 0.0
    for i in range(0,N):

        rv = bool(np.random.binomial(1,P))
        if (os.path.isfile(dtdir + dtdftpref + str(i) + '_test.dat') and rv):

            xyz,typ,Eact_t,chk    = gt.readncdat(dtdir + dtdftpref + str(i) + '_test.dat')
            xyz1,typ1,Eotr_t,chk  = gt.readncdat(dtpm6dir + dtpm6pref + str(i) + '_test.dat')

            if len(Eact_t) == len(Eotr_t):

                #print ('|----- File ' + str(i) + ' -----|')
                #print ('Name: ' + dtdir + dtdftpref + str(i) + '_test.dat')

                Eact += shiftlsttomin( Eact_t )
                Eotr += shiftlsttomin( Eotr_t )

                #Eact +=  Eact_t
                #Eotr +=  Eotr_t

                Nmol += 1
                Ndat += len( Eact_t )

                # Set the conformers in NeuroChem
                nc.setConformers(confs=xyz,types=typ)

                # Compute Forces of Conformations
                print(' ' + str(Nmol) + ') Computing ' + str(len( Eact_t )) + ' energies...')
                _t1b = tm.time()
                Ecmp_t = nc.computeEnergies()
                _t2b = (tm.time() - _t1b) * 1000.0
                t += _t2b
                #print('Computation complete. Time: ' + "{:.4f}".format(_t2b)  + 'ms')
                Ecmp += shiftlsttomin(  Ecmp_t )
                #Ecmp +=  Ecmp_t99
            else:
                print (str(len(Eact_t)) + '!=' + str(len(Eotr_t)) + ' File: ' + dtdir + dtdftpref + str(i) + '_test.dat')
        else:
            print('File not found: ' + dtdir + dtdftpref + str(i) + '_test.dat')
    Eact = np.array(Eact,dtype=float)
    Eotr = np.array(Eotr,dtype=float)
    Ecmp = np.array(Ecmp,dtype=float)

    return Eact,Ecmp,Eotr,Ndat,Nmol,t
            y += 1.0
        z += 1.0

    return xyz, typ, Na


# Set required files for pyNeuroChem
wkdir1 = '/home/jujuman/Research/GDB-11-wB97X-6-31gd/train_08_1/'

#Network 1 Files
cnstfile1 = wkdir1 + 'rHCNO-4.5A_32-3.1A_a8-8.params'
saefile1 = wkdir1 + 'sae_6-31gd.dat'
nnfdir1 = wkdir1 + 'networks/'

# Construct pyNeuroChem classes
nc1 = pync.pyNeuroChem(cnstfile1, saefile1, nnfdir1, 0)

idx = []
tme = []

for i in range(1, 20):
    xyz, typ, Na = generatemolgrid(['H', 'C', 'N', 'O'], 10, 10)

    # Set the conformers in NeuroChem
    nc1.setConformers(confs=xyz, types=typ)

    # Print some data from the NeuroChem
    print('1) Number of Atoms Loaded: ' + str(nc1.getNumAtoms()))
    print('1) Number of Confs Loaded: ' + str(nc1.getNumConfs()))

    # Compute Forces of Conformations

font = {'family': 'Bitstream Vera Sans', 'weight': 'normal', 'size': 14}

plt.rc('font', **font)

# Set required files for pyNeuroChem
wkdir = '/home/jujuman/Research/GDB-11-wB97X-6-31gd/train_08_5/'

# Network  Files
cnstfile = wkdir + 'rHCNO-4.7A_32-3.2A_a8-8.params'
saefile = wkdir + 'sae_6-31gd.dat'
nnfdir = wkdir + 'networks/'

# Construct pyNeuroChem classes
nc = pync.pyNeuroChem(cnstfile, saefile, nnfdir, 0)

# Read nc DATA
xyz, typ, Eact = gt.readncdat(
    '/home/jujuman/Dropbox/ChemSciencePaper.AER/TestCases/Retinol/data/retinolconformer_DFT.dat'
)
xyz1, typ1, Eact1 = gt.readncdat(
    '/home/jujuman/Dropbox/ChemSciencePaper.AER/TestCases/Retinol/data/retinolconformer_DFTB.dat'
)

Eact = np.array(Eact)
Eact1 = np.array(Eact1)

# Set the conformers in NeuroChem
nc.setConformers(confs=xyz, types=typ)
cnstfile = wkdir + 'rHCNO-4.6A_32-3.1A_a8-8.params'
saefile  = wkdir + 'sae_6-31gd.dat'
nnfdir   = wkdir + 'networks/'

xyz = [[0.00000,0.00000,0.37124,0.00000, 0.00000,-0.37124]
	  ,[0.00000,0.372635,0.00000,0.00000,-0.372635, 0.00000]]
	  #,[0.00000,0.00000,0.41000,0.00000, 0.00000,-0.41000]]

xyz = [[0.0, 0.0, 0.118604, 0.0, 0.67007291, -0.40437055, 0.0, -0.75981897, -0.474415], [0.0, 0.0, 0.118604, 0.0, 0.67007291, -0.4043705, 0.0, -0.75981897, -0.474415]]

typ = ['O','H','H']

#xyz,typ,Na = gt.readxyz('/home/jujuman/Dropbox/ChemSciencePaper.AER/TestCases/Ranolazine/optimization/test_AO2.xyz')

# Construct pyNeuroChem class
nc = pync.pyNeuroChem(cnstfile, saefile, nnfdir, 0)

# Set the conformers in NeuroChem
nc.setConformers(confs=xyz,types=typ[0])

# Print some data from the NeuroChem
print( 'Number of Atoms Loaded: ' + str(nc.getNumAtoms()) )
print( 'Number of Confs Loaded: ' + str(nc.getNumConfs()) )

# Compute Energies of Conformations
E = nc.computeEnergies()
F = nc.computeAnalyticalForces()
print ('-----------------DATA---------------')
#E = gt.hatokcal*E
print (E)
print (F)
def produce_scan(ax,title,xlabel,cnstfile,saefile,nnfdir,dtdir,dt1,dt2,dt3,smin,smax,iscale,ishift):
    xyz, typ, Eact, chk = gt.readncdat(dtdir + dt1,np.float32)
    xyz2, typ2, Eact2, chk = gt.readncdat(dtdir + dt2)
    xyz3, typ3, Eact3, chk = gt.readncdat(dtdir + dt3)

    #gt.writexyzfile("/home/jujuman/Dropbox/ChemSciencePaper.AER/TestCases/Dihedrals/4-Cyclohexyl-1-butanol/optimization/dihedral_"+dt1+".xyz",xyz,typ)

    #Eact = np.array(Eact)
    #Eact2 = np.array(Eact2)
    #Eact3 = np.array(Eact3)

    # Construct pyNeuroChem classes
    nc1 = pync.pyNeuroChem(cnstfile, saefile, nnfdir, 1)

    # Set the conformers in NeuroChem
    nc1.setConformers(confs=xyz, types=typ)

    # Print some data from the NeuroChem
    print('1) Number of Atoms Loaded: ' + str(nc1.getNumAtoms()))
    print('1) Number of Confs Loaded: ' + str(nc1.getNumConfs()))

    # Compute Forces of Conformations
    print('Computing energies 1...')
    _t1b = tm.time()
    Ecmp1 = nc1.energy()
    print('Computation complete 1. Time: ' + "{:.4f}".format((tm.time() - _t1b) * 1000.0) + 'ms')

    n = smin
    m = smax
    Ecmp1 = gt.hatokcal * Ecmp1
    Eact  = gt.hatokcal * Eact
    Eact2 = gt.hatokcal * Eact2
    Eact3 = gt.hatokcal * Eact3

    IDX = np.arange(0, Eact.shape[0], 1, dtype=float) * iscale + ishift

    IDX = IDX[n:m]
    Eact = Eact[n:m]
    Eact2 = Eact2[n:m]
    Eact3 = Eact3[n:m]
    Ecmp1 = Ecmp1[n:m]

    Ecmp1 = Ecmp1 - Ecmp1.min()
    Eact  = Eact  - Eact.min()
    Eact2 = Eact2 - Eact2.min()
    Eact3 = Eact3 - Eact3.min()

    rmse1 = gt.calculaterootmeansqrerror(Eact, Ecmp1)
    rmse3 = gt.calculaterootmeansqrerror(Eact, Eact2)
    rmse4 = gt.calculaterootmeansqrerror(Eact, Eact3)

    print("Spearman corr. 1: " + "{:.3f}".format(st.spearmanr(Ecmp1, Eact)[0]))
    print("Spearman corr. 2: " + "{:.3f}".format(st.spearmanr(Eact2, Eact)[0]))
    print("Spearman corr. 3: " + "{:.3f}".format(st.spearmanr(Eact3, Eact)[0]))

    ax.plot(IDX, Eact, '-', marker=r'o', color='black', label='DFT',
             linewidth=2, markersize=7)
    ax.plot(IDX, Ecmp1, ':', marker=r'D', color='red', label='ANI-1 RMSE: ' + '%s' % float('%.3g' % rmse1) + ' kcal/mol',
             linewidth=2, markersize=5)
    ax.plot(IDX, Eact2, ':', marker=r'v', color='blue', label='DFTB  RMSE: ' + '%s' % float('%.3g' % rmse3) + ' kcal/mol',
             linewidth=2, markersize=5)
    ax.plot(IDX, Eact3, ':', marker=r'*', color='orange', label='PM6   RMSE: ' + '%s' % float('%.3g' % rmse4) + ' kcal/mol',
             linewidth=2, markersize=7)

    #ax.plot(IDX, Eact, color='black', label='DFT', linewidth=3)
    #ax.scatter(IDX, Eact, marker='o', color='black', linewidth=4)

    th = ax.set_title(title,fontsize=16)
    th.set_position([0.5,1.005])

    # Set Limits
    ax.set_xlim([ IDX.min(),IDX.max()])
    ax.set_ylim([Eact.min()-1.0,Eact.max()+1.0])

    ax.set_ylabel('$\Delta$E calculated (kcal/mol)')
    ax.set_xlabel(xlabel)
    ax.legend(bbox_to_anchor=(0.2, 0.98), loc=2, borderaxespad=0., fontsize=14)
                x += 1.0
            y += 1.0
        z += 1.0

    return xyz,typ,Na

# Set required files for pyNeuroChem
wkdir1    = '/home/jujuman/Research/GDB-11-wB97X-6-31gd/train_08_1/'

#Network 1 Files
cnstfile1 = wkdir1 + 'rHCNO-4.5A_32-3.1A_a8-8.params'
saefile1  = wkdir1 + 'sae_6-31gd.dat'
nnfdir1   = wkdir1 + 'networks/'

# Construct pyNeuroChem classes
nc1 = pync.pyNeuroChem(cnstfile1,saefile1,nnfdir1,0)

idx = []
tme = []

for i in range(1,20):
    xyz,typ,Na = generatemolgrid(['H','C','N','O'],10,10)

    # Set the conformers in NeuroChem
    nc1.setConformers(confs=xyz,types=typ)

    # Print some data from the NeuroChem
    print( '1) Number of Atoms Loaded: ' + str(nc1.getNumAtoms()) )
    print( '1) Number of Confs Loaded: ' + str(nc1.getNumConfs()) )

    # Compute Forces of Conformations
Esempio n. 8
0
def produce_scan(ax, title, xlabel, cnstfile, saefile, nnfdir, dtdir, dt1, dt2,
                 dt3, smin, smax, iscale, ishift):
    xyz, typ, Eact, chk = gt.readncdat(dtdir + dt1)
    xyz2, typ2, Eact2, chk = gt.readncdat(dtdir + dt2)
    xyz3, typ3, Eact3, chk = gt.readncdat(dtdir + dt3)

    Eact = np.array(Eact)
    Eact2 = np.array(Eact2)
    Eact3 = np.array(Eact3)

    # Construct pyNeuroChem classes
    nc1 = pync.pyNeuroChem(cnstfile, saefile, nnfdir, 1)

    # Set the conformers in NeuroChem
    nc1.setConformers(confs=xyz, types=typ)

    # Print some data from the NeuroChem
    print('1) Number of Atoms Loaded: ' + str(nc1.getNumAtoms()))
    print('1) Number of Confs Loaded: ' + str(nc1.getNumConfs()))

    # Compute Forces of Conformations
    print('Computing energies 1...')
    _t1b = tm.time()
    Ecmp1 = np.array(nc1.computeEnergies())
    print('Computation complete 1. Time: ' +
          "{:.4f}".format((tm.time() - _t1b) * 1000.0) + 'ms')

    n = smin
    m = smax
    Ecmp1 = gt.hatokcal * Ecmp1
    Eact = gt.hatokcal * Eact
    Eact2 = gt.hatokcal * Eact2
    Eact3 = gt.hatokcal * Eact3

    IDX = np.arange(0, Eact.shape[0], 1, dtype=float) * iscale + ishift

    IDX = IDX[n:m]
    Eact = Eact[n:m]
    Eact2 = Eact2[n:m]
    Eact3 = Eact3[n:m]
    Ecmp1 = Ecmp1[n:m]

    Ecmp1 = Ecmp1 - Ecmp1.min()
    Eact = Eact - Eact.min()
    Eact2 = Eact2 - Eact2.min()
    Eact3 = Eact3 - Eact3.min()

    rmse1 = gt.calculaterootmeansqrerror(Eact, Ecmp1)
    rmse3 = gt.calculaterootmeansqrerror(Eact, Eact2)
    rmse4 = gt.calculaterootmeansqrerror(Eact, Eact3)

    print("Spearman corr. 1: " + "{:.3f}".format(st.spearmanr(Ecmp1, Eact)[0]))
    print("Spearman corr. 2: " + "{:.3f}".format(st.spearmanr(Eact2, Eact)[0]))
    print("Spearman corr. 3: " + "{:.3f}".format(st.spearmanr(Eact3, Eact)[0]))

    ax.plot(IDX,
            Eact,
            '-',
            marker=r'o',
            color='black',
            label='DFT',
            linewidth=2,
            markersize=7)
    ax.plot(IDX,
            Ecmp1,
            ':',
            marker=r'D',
            color='red',
            label='ANI-1 RMSE: ' + '%s' % float('%.3g' % rmse1) + ' kcal/mol',
            linewidth=2,
            markersize=5)
    ax.plot(IDX,
            Eact2,
            ':',
            marker=r'v',
            color='blue',
            label='DFTB  RMSE: ' + '%s' % float('%.3g' % rmse3) + ' kcal/mol',
            linewidth=2,
            markersize=5)
    ax.plot(IDX,
            Eact3,
            ':',
            marker=r'*',
            color='orange',
            label='PM6   RMSE: ' + '%s' % float('%.3g' % rmse4) + ' kcal/mol',
            linewidth=2,
            markersize=7)

    #ax.plot(IDX, Eact, color='black', label='DFT', linewidth=3)
    #ax.scatter(IDX, Eact, marker='o', color='black', linewidth=4)

    th = ax.set_title(title, fontsize=16)
    th.set_position([0.5, 1.005])

    # Set Limits
    ax.set_xlim([IDX.min(), IDX.max()])
    ax.set_ylim([Eact.min() - 1.0, Eact.max() + 1.0])

    ax.set_ylabel('$\Delta$E calculated (kcal/mol)')
    ax.set_xlabel(xlabel)
    ax.legend(bbox_to_anchor=(0.2, 0.98), loc=2, borderaxespad=0., fontsize=14)
def produce_scan(title, xlabel, cnstfile, saefile, nnfdir, dtdir, dt1, smin, smax, iscale, ishift, atm):
    xyz, frc, typ, Eact, chk = gt.readncdatwforce(dtdir + dt1)

    xyz = np.asarray(xyz, dtype=np.float32)
    xyz = xyz.reshape((xyz.shape[0], len(typ), 3))

    print(xyz)

    frc = np.asarray(frc, dtype=np.float32)
    frc = frc.reshape((frc.shape[0], len(typ), 3))

    Eact = np.array(Eact)

    # Construct pyNeuroChem classes
    nc1 = pync.pyNeuroChem(cnstfile, saefile, nnfdir, 0)

    # Set the conformers in NeuroChem
    nc1.setConformers(confs=xyz, types=typ)

    # Print some data from the NeuroChem
    print("1) Number of Atoms Loaded: " + str(nc1.getNumAtoms()))
    print("1) Number of Confs Loaded: " + str(nc1.getNumConfs()))

    # Compute Energies of Conformations
    print("Computing energies...")
    _t1b = tm.time()
    Ecmp1 = nc1.energy()
    print("Energy computation complete. Time: " + "{:.4f}".format((tm.time() - _t1b) * 1000.0) + "ms")

    # Compute Forces of Conformations
    print("Compute forces...")
    _t1b = tm.time()
    F = nc1.force()
    print("Force computation complete. Time: " + "{:.4f}".format((tm.time() - _t1b) * 1000.0) + "ms")

    # Fn = np.array(nc1.computeNumericalForces(dr=0.0001))

    n = smin
    m = smax
    Ecmp1 = gt.hatokcal * Ecmp1
    Eact = gt.hatokcal * Eact

    IDX = np.arange(0, Eact.shape[0], 1, dtype=float) * iscale + ishift

    IDX = IDX
    Eact = Eact
    Ecmp1 = Ecmp1

    Ecmp1 = Ecmp1 - Ecmp1.min()
    Eact = Eact - Eact.min()

    rmse1 = gt.calculaterootmeansqrerror(Eact, Ecmp1)

    print("Spearman corr. 1: " + "{:.3f}".format(st.spearmanr(Ecmp1, Eact)[0]))

    fig, axes = plt.subplots(nrows=2, ncols=2)

    axes.flat[0].plot(IDX, Eact, "-", color="black", label="DFT", linewidth=6)
    axes.flat[0].plot(IDX, Ecmp1, "--", color="red", label="ANI-1", linewidth=6)

    # ax.plot(IDX, Eact, color='black', label='DFT', linewidth=3)
    # ax.scatter(IDX, Eact, marker='o', color='black', linewidth=4)

    th = axes.flat[0].set_title(title, fontsize=13)
    th.set_position([0.5, 1.00])

    # Set Limits
    axes.flat[0].set_xlim([IDX.min(), IDX.max()])
    # axes.flat[0].set_ylim([Eact.min()-1.0,Eact.max()+1.0])

    axes.flat[0].set_ylabel("$\Delta$E calculated (kcal/mol)")
    axes.flat[0].set_xlabel(xlabel)
    axes.flat[0].legend(bbox_to_anchor=(0.2, 0.98), loc=2, borderaxespad=0.0, fontsize=12)

    # print (Fn)

    for i in range(0, 3):
        Fq = F[:, :, i][:, atm]
        # Fnq = Fn[:,i]
        Faq = 1.8897259885789 * np.array(frc)[:, :, i][:, atm]
        print(Fq)
        print(Faq)

        th = axes.flat[i + 1].set_title("Force for atom " + str(atm) + ": coordinate " + str(i), fontsize=13)
        th.set_position([0.5, 1.00])

        axes.flat[i + 1].set_xlim([IDX.min(), IDX.max()])

        axes.flat[i + 1].plot(IDX, Faq, "-", color="black", label="DFT", linewidth=6)
        # axes.flat[i+1].plot(IDX, Fnq, '-', color='blue', label='ANI Numerical',
        #    linewidth=6)
        axes.flat[i + 1].plot(IDX, Fq, "--", color="red", label="ANI Analytical", linewidth=6)

        axes.flat[i + 1].set_ylabel("Force (Ha/A)")
        axes.flat[i + 1].set_xlabel(xlabel)
        axes.flat[i + 1].legend(bbox_to_anchor=(0.2, 0.98), loc=2, borderaxespad=0.0, fontsize=12)

    font = {"family": "Bitstream Vera Sans", "weight": "normal", "size": 12}

    plt.rc("font", **font)

    plt.show()
# Set required files for pyNeuroChem
wkdir1 = '/home/jujuman/Research/GDB-11-wB97X-6-31gd/train_08_2/'
wkdir2 = '/home/jujuman/Research/GDB-11-wB97X-6-31gd/train_08_3/'

#Network 1 Files
cnstfile1 = wkdir1 + 'rHCNO-4.6A_32-3.1A_a8-8.params'
saefile1 = wkdir1 + 'sae_6-31gd.dat'
nnfdir1 = wkdir1 + 'networks/'

# Network 2 Files
cnstfile2 = wkdir2 + 'rHCNO-4.6A_32-3.1A_a8-8.params'
saefile2 = wkdir2 + 'sae_6-31gd.dat'
nnfdir2 = wkdir2 + 'networks/'

# Construct pyNeuroChem classes
nc1 = pync.pyNeuroChem(cnstfile1, saefile1, nnfdir1, 0)
nc2 = pync.pyNeuroChem(cnstfile2, saefile2, nnfdir2, 0)

xyz, typ, Eact = gt.readncdat(
    '/home/jujuman/Dropbox/Research/ChemSciencePaper/TestCases/C10H20Isomers/isomer_structures_DFT.dat'
)

Eact = np.array(Eact)

# Set the conformers in NeuroChem
nc1.setConformers(confs=xyz, types=typ)
nc2.setConformers(confs=xyz, types=typ)

# Print some data from the NeuroChem
print('Number of Atoms Loaded: ' + str(nc1.getNumAtoms()))
print('Number of Confs Loaded: ' + str(nc1.getNumConfs()))
Esempio n. 11
0
def produce_scan(title, xlabel, cnstfile, saefile, nnfdir, dtdir, dt1, smin,
                 smax, iscale, ishift, atm):
    xyz, frc, typ, Eact, chk = gt.readncdatwforce(dtdir + dt1)

    xyz = np.asarray(xyz, dtype=np.float32)
    xyz = xyz.reshape((xyz.shape[0], len(typ), 3))

    print(xyz)

    frc = np.asarray(frc, dtype=np.float32)
    frc = frc.reshape((frc.shape[0], len(typ), 3))

    Eact = np.array(Eact)

    # Construct pyNeuroChem classes
    nc1 = pync.pyNeuroChem(cnstfile, saefile, nnfdir, 0)

    # Set the conformers in NeuroChem
    nc1.setConformers(confs=xyz, types=typ)

    # Print some data from the NeuroChem
    print('1) Number of Atoms Loaded: ' + str(nc1.getNumAtoms()))
    print('1) Number of Confs Loaded: ' + str(nc1.getNumConfs()))

    # Compute Energies of Conformations
    print('Computing energies...')
    _t1b = tm.time()
    Ecmp1 = nc1.energy()
    print('Energy computation complete. Time: ' +
          "{:.4f}".format((tm.time() - _t1b) * 1000.0) + 'ms')

    # Compute Forces of Conformations
    print('Compute forces...')
    _t1b = tm.time()
    F = nc1.force()
    print('Force computation complete. Time: ' +
          "{:.4f}".format((tm.time() - _t1b) * 1000.0) + 'ms')

    #Fn = np.array(nc1.computeNumericalForces(dr=0.0001))

    n = smin
    m = smax
    Ecmp1 = gt.hatokcal * Ecmp1
    Eact = gt.hatokcal * Eact

    IDX = np.arange(0, Eact.shape[0], 1, dtype=float) * iscale + ishift

    IDX = IDX
    Eact = Eact
    Ecmp1 = Ecmp1

    Ecmp1 = Ecmp1 - Ecmp1.min()
    Eact = Eact - Eact.min()

    rmse1 = gt.calculaterootmeansqrerror(Eact, Ecmp1)

    print("Spearman corr. 1: " + "{:.3f}".format(st.spearmanr(Ecmp1, Eact)[0]))

    fig, axes = plt.subplots(nrows=2, ncols=2)

    axes.flat[0].plot(IDX, Eact, '-', color='black', label='DFT', linewidth=6)
    axes.flat[0].plot(IDX,
                      Ecmp1,
                      '--',
                      color='red',
                      label='ANI-1',
                      linewidth=6)

    #ax.plot(IDX, Eact, color='black', label='DFT', linewidth=3)
    #ax.scatter(IDX, Eact, marker='o', color='black', linewidth=4)

    th = axes.flat[0].set_title(title, fontsize=13)
    th.set_position([0.5, 1.00])

    # Set Limits
    axes.flat[0].set_xlim([IDX.min(), IDX.max()])
    #axes.flat[0].set_ylim([Eact.min()-1.0,Eact.max()+1.0])

    axes.flat[0].set_ylabel('$\Delta$E calculated (kcal/mol)')
    axes.flat[0].set_xlabel(xlabel)
    axes.flat[0].legend(bbox_to_anchor=(0.2, 0.98),
                        loc=2,
                        borderaxespad=0.,
                        fontsize=12)

    #print (Fn)

    for i in range(0, 3):
        Fq = F[:, :, i][:, atm]
        #Fnq = Fn[:,i]
        Faq = (1.8897259885789 * np.array(frc)[:, :, i][:, atm])
        print(Fq)
        print(Faq)

        th = axes.flat[i + 1].set_title("Force for atom " + str(atm) +
                                        ": coordinate " + str(i),
                                        fontsize=13)
        th.set_position([0.5, 1.00])

        axes.flat[i + 1].set_xlim([IDX.min(), IDX.max()])

        axes.flat[i + 1].plot(IDX,
                              Faq,
                              '-',
                              color='black',
                              label='DFT',
                              linewidth=6)
        #axes.flat[i+1].plot(IDX, Fnq, '-', color='blue', label='ANI Numerical',
        #    linewidth=6)
        axes.flat[i + 1].plot(IDX,
                              Fq,
                              '--',
                              color='red',
                              label='ANI Analytical',
                              linewidth=6)

        axes.flat[i + 1].set_ylabel('Force (Ha/A)')
        axes.flat[i + 1].set_xlabel(xlabel)
        axes.flat[i + 1].legend(bbox_to_anchor=(0.2, 0.98),
                                loc=2,
                                borderaxespad=0.,
                                fontsize=12)

    font = {'family': 'Bitstream Vera Sans', 'weight': 'normal', 'size': 12}

    plt.rc('font', **font)

    plt.show()