Esempio n. 1
0
def main():
    A = em.read_csv_metadata('../Data/A_imdb.csv', key='id')
    B = em.read_csv_metadata('../Data/B_tmdb.csv', key='id')
    ab = em.AttrEquivalenceBlocker()
    shared_attributes = ['title', 'directors', 'release_year', 'languages']
    C = ab.block_tables(A,
                        B,
                        'directors',
                        'directors',
                        l_output_attrs=shared_attributes,
                        r_output_attrs=shared_attributes)
    # Take a sample of 10 pairs
    S = em.sample_table(C, 100)
    print(S)
    G = em.label_table(S, label_column_name='gold_labels')
    train_test = em.split_train_test(G, train_proportion=0.5)
    train, test = train_test['train'], train_test['test']
    # Get feature for matching
    match_f = em.get_features_for_matching(A, B)
    H = em.extract_feature_vecs(train,
                                attrs_before=['ltable_title', 'rtable_title'],
                                feature_table=match_f,
                                attrs_after=['gold_labels'])
    H.fillna(value=0, inplace=True)
    print(H)
    # Specifying Matchers and Performing Matching.
    dt = em.DTMatcher(max_depth=5)  # A decision tree matcher.
    # Train the matcher
    dt.fit(table=H,
           exclude_attrs=[
               '_id', 'ltable_id', 'rtable_id', 'ltable_title', 'rtable_title',
               'gold_labels'
           ],
           target_attr='gold_labels')
    # Predict
    F = em.extract_feature_vecs(test,
                                attrs_before=['ltable_title', 'rtable_title'],
                                feature_table=match_f,
                                attrs_after=['gold_labels'])
    F.fillna(value=0, inplace=True)
    print(F)
    pred_table = dt.predict(table=F,
                            exclude_attrs=[
                                '_id', 'ltable_id', 'rtable_id',
                                'ltable_title', 'rtable_title', 'gold_labels'
                            ],
                            target_attr='predicted_labels',
                            return_probs=True,
                            probs_attr='proba',
                            append=True,
                            inplace=True)
    print(pred_table)
    eval_summary = em.eval_matches(pred_table, 'gold_labels',
                                   'predicted_labels')
    em.print_eval_summary(eval_summary)
Esempio n. 2
0
def predict_matching_tuples(A, B, C, G):
    # Split G into I and J for CV
    IJ = em.split_train_test(G, train_proportion=0.5, random_state=0)
    I = IJ['train']
    # Generate features set F
    F = em.get_features_for_matching(A, B, validate_inferred_attr_types=False)
    # Convert G to a set of feature vectors using F
    H = em.extract_feature_vecs(I,
                                feature_table=F,
                                attrs_after='label',
                                show_progress=False)
    excluded_attributes = ['_id', 'l_id', 'r_id', 'label']
    # Fill in missing values with column's average
    H = em.impute_table(H, exclude_attrs=excluded_attributes, strategy='mean')
    # Create and train a logistic regression - the best matcher from stage3.
    lg = em.LogRegMatcher(name='LogReg', random_state=0)
    lg.fit(table=H, exclude_attrs=excluded_attributes, target_attr='label')
    # Convert C into a set of features using F
    L = em.extract_feature_vecs(C, feature_table=F, show_progress=False)
    # Fill in missing values with column's average
    L = em.impute_table(L,
                        exclude_attrs=['_id', 'l_id', 'r_id'],
                        strategy='mean')
    # Predict on L with trained matcher
    predictions = lg.predict(table=L,
                             exclude_attrs=['_id', 'l_id', 'r_id'],
                             append=True,
                             target_attr='predicted',
                             inplace=False,
                             return_probs=False,
                             probs_attr='proba')
    # Extract the matched pairs' ids
    matched_pairs = predictions[predictions.predicted == 1]
    matched_ids = matched_pairs[['l_id', 'r_id']]
    # Save matched_pairs to file so we don't have to train and predict each time the code is executed
    matched_ids.to_csv(FOLDER + 'predictedMatchedIDs.csv', index=False)
Esempio n. 3
0
import py_entitymatching as em
import os
import copy
import pandas as pd
import csv

sampled_movies = em.read_csv_metadata('datasets/tmp_movies_8.csv', key='id')
sampled_tracks = em.read_csv_metadata('datasets/tmp_tracks_8.csv', key='id')
tbl_labeled = em.read_csv_metadata('datasets/sampled_8.csv',
                                   ltable=sampled_movies,
                                   rtable=sampled_tracks)

# spliting data into training and testing sets
train_test = em.split_train_test(tbl_labeled, train_proportion=0.7)

dev_set = train_test['train']
eval_set = train_test['test']
em.to_csv_metadata(dev_set, 'datasets/dev_set.csv')
em.to_csv_metadata(eval_set, 'datasets/eval_set.csv')

# myset = em.split_train_test(dev_set, train_proportion=0.9)
# I_set = myset['train']
# J_set = myset['test']
# em.to_csv_metadata(I_set, 'datasets/I_set.csv')
# em.to_csv_metadata(J_set, 'datasets/J_set.csv')

# creating feature for matching
match_t = em.get_tokenizers_for_matching()
match_s = em.get_sim_funs_for_matching()
atypes1 = em.get_attr_types(sampled_movies)
atypes2 = em.get_attr_types(sampled_tracks)
A = em.read_csv_metadata(path_A, key='ID')
B = em.read_csv_metadata(path_B, key='ID')
# read G
path_G = '../data/G.csv'
G = em.read_csv_metadata(path_G,
                         key='_id',
                         ltable=A,
                         rtable=B,
                         fk_ltable='ltable_ID',
                         fk_rtable='rtable_ID')
print('Number of tuples in A: ' + str(len(A)))
print('Number of tuples in B: ' + str(len(B)))
print('Number of tuples in G: ' + str(len(G)))

# create I and J sets
IJ = em.split_train_test(G, train_proportion=0.7, random_state=0)
I = IJ['train']
J = IJ['test']

# prepare classifiers
dt = em.DTMatcher(name='DecisionTree', random_state=0)
svm = em.SVMMatcher(name='SVM', kernel='linear', random_state=0)
rf = em.RFMatcher(name='RF', random_state=0)
lg = em.LogRegMatcher(name='LogReg', random_state=0)
ln = em.LinRegMatcher(name='LinReg')
nb = em.NBMatcher(name='NaiveBayes')

# need A and B csv files
feature_table = em.get_features_for_matching(
    A, B, validate_inferred_attr_types=False)
Esempio n. 5
0
import sys
import py_entitymatching as em
import pandas as pd
import os

path_A = '/home/liang/Workspace/cs839-project/stage-3/data/amazon_products.csv'
path_B = '/home/liang/Workspace/cs839-project/stage-3/data/walmart_products.csv'

# Load the csv files as dataframes and set the key attribute in the dataframe
A = em.read_csv_metadata(path_A, key='id')
B = em.read_csv_metadata(path_B, key='id')
print('len(A):' + str(len(A)))
print('len(B):' + str(len(B)))
print('len (A X B):' + str(len(A) * len(B)))
path_S = 'data/original.csv'
S = em.read_csv_metadata(path_S,
                         key='id',
                         ltable=A,
                         rtable=B,
                         fk_ltable='left_id',
                         fk_rtable='right_id')
IJ = em.split_train_test(S, train_proportion=0.6, random_state=0)
I = IJ['train']
J = IJ['test']
JK = em.split_train_test(J, train_proportion=.5, random_state=0)
J = JK['train']
K = JK['test']
I.to_csv('data/train.csv')
J.to_csv('data/validation.csv')
K.to_csv('data/test.csv')
print(I, J, K)
Esempio n. 6
0
def main():
    # Read in data files
    A = em.read_csv_metadata(FOLDER + 'A.csv', key='id')  # imdb data
    B = em.read_csv_metadata(FOLDER + 'B.csv', key='id')  # tmdb data
    G = em.read_csv_metadata(FOLDER + 'G.csv',
                             key='_id',
                             ltable=A,
                             rtable=B,
                             fk_ltable='l_id',
                             fk_rtable='r_id')  # labeled data
    # Split G into I and J for CV
    IJ = em.split_train_test(G, train_proportion=0.5, random_state=0)
    I = IJ['train']
    J = IJ['test']
    # Save I and J to files
    I.to_csv(FOLDER + 'I.csv', index=False)
    J.to_csv(FOLDER + 'J.csv', index=False)
    # Generate features set F
    F = em.get_features_for_matching(A, B, validate_inferred_attr_types=False)
    #print(F.feature_name)
    #print(type(F))
    # Convert I to a set of feature vectors using F
    H = em.extract_feature_vecs(I,
                                feature_table=F,
                                attrs_after='label',
                                show_progress=False)
    #print(H.head)
    # Check of missing values
    #print(any(pd.notnull(H)))
    excluded_attributes = ['_id', 'l_id', 'r_id', 'label']
    # Fill in missing values with column's average
    H = em.impute_table(H, exclude_attrs=excluded_attributes, strategy='mean')
    # Create a set of matchers
    dt = em.DTMatcher(name='DecisionTree', random_state=0)
    svm = em.SVMMatcher(name='SVM', random_state=0)
    rf = em.RFMatcher(name='RF', random_state=0)
    lg = em.LogRegMatcher(name='LogReg', random_state=0)
    ln = em.LinRegMatcher(name='LinReg')
    nb = em.NBMatcher(name='NaiveBayes')
    # Selecting best matcher with CV using F1-score as criteria
    CV_result = em.select_matcher([dt, rf, svm, ln, lg, nb],
                                  table=H,
                                  exclude_attrs=excluded_attributes,
                                  k=10,
                                  target_attr='label',
                                  metric_to_select_matcher='f1',
                                  random_state=0)
    print(CV_result['cv_stats'])  # RF is the best matcher
    # Train matchers on H
    dt.fit(table=H, exclude_attrs=excluded_attributes, target_attr='label')
    rf.fit(table=H, exclude_attrs=excluded_attributes, target_attr='label')
    svm.fit(table=H, exclude_attrs=excluded_attributes, target_attr='label')
    lg.fit(table=H, exclude_attrs=excluded_attributes, target_attr='label')
    ln.fit(table=H, exclude_attrs=excluded_attributes, target_attr='label')
    nb.fit(table=H, exclude_attrs=excluded_attributes, target_attr='label')
    # Convert J into a set of features using F
    L = em.extract_feature_vecs(J,
                                feature_table=F,
                                attrs_after='label',
                                show_progress=False)
    # Fill in missing values with column's average
    L = em.impute_table(L, exclude_attrs=excluded_attributes, strategy='mean')
    # Predict on L with trained matchers
    predictions_dt = dt.predict(table=L,
                                exclude_attrs=excluded_attributes,
                                append=True,
                                target_attr='predicted',
                                inplace=False,
                                return_probs=False,
                                probs_attr='proba')
    predictions_rf = rf.predict(table=L,
                                exclude_attrs=excluded_attributes,
                                append=True,
                                target_attr='predicted',
                                inplace=False,
                                return_probs=False,
                                probs_attr='proba')
    predictions_svm = svm.predict(table=L,
                                  exclude_attrs=excluded_attributes,
                                  append=True,
                                  target_attr='predicted',
                                  inplace=False,
                                  return_probs=False,
                                  probs_attr='proba')
    predictions_lg = lg.predict(table=L,
                                exclude_attrs=excluded_attributes,
                                append=True,
                                target_attr='predicted',
                                inplace=False,
                                return_probs=False,
                                probs_attr='proba')
    predictions_ln = ln.predict(table=L,
                                exclude_attrs=excluded_attributes,
                                append=True,
                                target_attr='predicted',
                                inplace=False,
                                return_probs=False,
                                probs_attr='proba')
    predictions_nb = nb.predict(table=L,
                                exclude_attrs=excluded_attributes,
                                append=True,
                                target_attr='predicted',
                                inplace=False,
                                return_probs=False,
                                probs_attr='proba')
    # Evaluate predictions
    dt_eval = em.eval_matches(predictions_dt, 'label', 'predicted')
    em.print_eval_summary(dt_eval)
    rf_eval = em.eval_matches(predictions_rf, 'label', 'predicted')
    em.print_eval_summary(rf_eval)
    svm_eval = em.eval_matches(predictions_svm, 'label', 'predicted')
    em.print_eval_summary(svm_eval)
    lg_eval = em.eval_matches(predictions_lg, 'label', 'predicted')
    em.print_eval_summary(lg_eval)
    ln_eval = em.eval_matches(predictions_ln, 'label', 'predicted')
    em.print_eval_summary(ln_eval)
    nb_eval = em.eval_matches(predictions_nb, 'label', 'predicted')
    em.print_eval_summary(nb_eval)
Esempio n. 7
0
import py_entitymatching as em

songs = em.read_csv_metadata('data/song_sample.csv',low_memory = False)
tracks = em.read_csv_metadata('data/track_sample.csv',low_memory = False)

em.set_key(songs, 'id')
em.set_key(tracks, 'id')

labeled_candidates = em.read_csv_metadata('data/golden_labeled_all_missing_removed.csv', key = '_id',ltable = songs, rtable = tracks, fk_ltable='ltable_id', fk_rtable='rtable_id')

IJ = em.split_train_test(labeled_candidates, train_proportion=0.7, random_state=0)
I = IJ['train']
J = IJ['test']

dt = em.DTMatcher(name='DecisionTree', random_state=0)
svm = em.SVMMatcher(name='SVM', random_state=0)
rf = em.RFMatcher(name='RF', random_state=0)
lg = em.LogRegMatcher(name='LogReg', random_state=0)
ln = em.LinRegMatcher(name='LinReg')
nb = em.NBMatcher(name='NaiveBayes')

feature_table = em.get_features_for_matching(songs, tracks)

H = em.extract_feature_vecs(I, 
                            feature_table=feature_table, 
                            attrs_after='gold',
                            show_progress=False)
							
result = em.select_matcher([dt, rf, svm, ln, lg, nb], table=H, 
        exclude_attrs=['_id', 'ltable_id', 'rtable_id', 'gold'],
        k=5,
Esempio n. 8
0
# Save Table D
#em.to_csv_metadata(D, './TableD.csv')

# Sample candidate set of size 300
S = em.sample_table(D, 300)
# Gold label
#G = em.label_table(S, label_column_name = 'gold_labels')
G = em.read_csv_metadata('./labeled.csv',
                         key='_id',
                         fk_ltable='ltable_ID',
                         fk_rtable='rtable_ID',
                         ltable=A,
                         rtable=B)
# Split training set and test set
train_test = em.split_train_test(G, train_proportion=0.5)
I = train_test['train']
I['ltable_edition'] = ''
I['rtable_edition'] = ''
I['ltable_pages'] = ''
I['rtable_pages'] = ''
J = train_test['test']
J['ltable_edition'] = ''
J['rtable_edition'] = ''
J['ltable_pages'] = ''
J['rtable_pages'] = ''

# Save Set I
#em.to_csv_metadata(I, './TableI.csv')
# Save Set J
#em.to_csv_metadata(J, './TableJ.csv')
Esempio n. 9
0
                         key='_id',
                         ltable=A,
                         rtable=B,
                         fk_ltable='ltable_id',
                         fk_rtable='rtable_id')

# L = K1.copy()
# print(L.columns)
print('Loading labels...')
L['gold'] = 0
trues = exact[exact['gold'] == 1][['ltable.id', 'rtable.id']]
L['temp'] = L['ltable_id'].astype(str) + L['rtable_id'].astype(str)
trues['temp'] = trues['ltable.id'].astype(str) + trues['rtable.id'].astype(str)
L.loc[L['temp'].isin(trues['temp']), ['gold']] = 1

development_evaluation = em.split_train_test(L, train_proportion=0.5)
development = development_evaluation['train']
evaluation = development_evaluation['test']

print('Creating feature vectors...')
train_feature_vectors = em.extract_feature_vecs(development,
                                                attrs_after='gold',
                                                feature_table=features)
test_feature_vectors = em.extract_feature_vecs(evaluation,
                                               attrs_after='gold',
                                               feature_table=features)

train_feature_vectors = train_feature_vectors.fillna(0.0)
test_feature_vectors = test_feature_vectors.fillna(0.0)

print("tagged pairs:" + str(exact['gold'].value_counts()))
Esempio n. 10
0
# If you would like to avoid labeling the pairs for now, you can download the labled.csv file from
# BigGorilla using the following command (if you prefer to do it yourself, commend the next line)
response = urllib.urlretrieve('https://anaconda.org/BigGorilla/datasets/1/download/labeled.csv',
                              './data/labeled.csv')
labeled = em.read_csv_metadata('data/labeled.csv', ltable=kaggle_data, rtable=imdb_data,
                               fk_ltable='l_id', fk_rtable='r_id', key='_id')
labeled.head()


# #### Substep E: Traning machine learning algorithms
# 
# Now we can use the sampled dataset to train various machine learning algorithms for our prediction task. To do so, we need to split our dataset into a training and a test set, and then select the desired machine learning techniques for our prediction task.

# In[26]:

split = em.split_train_test(labeled, train_proportion=0.5, random_state=0)
train_data = split['train']
test_data = split['test']

dt = em.DTMatcher(name='DecisionTree', random_state=0)
svm = em.SVMMatcher(name='SVM', random_state=0)
rf = em.RFMatcher(name='RF', random_state=0)
lg = em.LogRegMatcher(name='LogReg', random_state=0)
ln = em.LinRegMatcher(name='LinReg')
nb = em.NBMatcher(name='NaiveBayes')


# Before we can apply any machine learning technique, we need to extract a set of features. Fortunately, the **py_entitymatching** package can automatically extract a set of features once we specify which columns in the two datasets correspond to each other. The following code snippet starts by specifying the correspondence between the column of the two datasets. Then, it uses the **py_entitymatching** package to determine the type of each column. By considering the types of columns in each dataset (stored in variables *l_attr_types* and *r_attr_types*), and using the tokenizers and similarity functions suggested by the package, we can extract a set of instructions for extracting features. Note that variable **F** is not the set of extracted features, rather it encodes the instructions for computing the features.

# In[27]:
Esempio n. 11
0
# In[107]:

## Find number of positive and negative examples
G.groupby('gold_labels').count()

# <h1> Splitting the labeled data into development and evaluation set
#
#
#

# In this step, we split the labeled data into two sets: development (I) and evaluation (J). Specifically, the development set is used to come up with the best learning-based matcher and the evaluation set used to evaluate the selected matcher on unseen data.

# In[109]:

# Split S into development set (I) and evaluation set (J)
train_test = em.split_train_test(G, train_proportion=0.7)
I = train_test['train']
J = train_test['test']

# <h1>  Selecting the best learning-based matcher

# Selecting the best learning-based matcher typically involves the following steps:
#
# * Creating a set of learning-based matchers
# * Creating features
# * Converting the development set into feature vectors
# * Selecting the best learning-based matcher using k-fold cross validation
#

# Creating a set of learning-based matchers
# ------------------
Esempio n. 12
0
def main():
    # Read in data files
    A = em.read_csv_metadata(FOLDER + 'A.csv', key='id')  # imdb data
    B = em.read_csv_metadata(FOLDER + 'B.csv', key='id')  # tmdb data
    G = em.read_csv_metadata(FOLDER + 'G.csv',
                             key='_id',
                             ltable=A,
                             rtable=B,
                             fk_ltable='l_id',
                             fk_rtable='r_id')  # labeled data
    # Split G into I and J for CV
    IJ = em.split_train_test(G, train_proportion=0.5, random_state=0)
    I = IJ['train']
    # Generate features set F
    F = em.get_features_for_matching(A, B, validate_inferred_attr_types=False)
    # Convert I to a set of feature vectors using F
    H = em.extract_feature_vecs(I,
                                feature_table=F,
                                attrs_after='label',
                                show_progress=False)
    excluded_attributes = ['_id', 'l_id', 'r_id', 'label']
    # Fill in missing values with column's average
    H = em.impute_table(H, exclude_attrs=excluded_attributes, strategy='mean')
    # Create and train a logistic regression - the best matcher from stage3.
    lg = em.LogRegMatcher(name='LogReg', random_state=0)
    lg.fit(table=H, exclude_attrs=excluded_attributes, target_attr='label')
    # Read in the candidate tuple pairs.
    C = em.read_csv_metadata(FOLDER + 'C.csv',
                             key='_id',
                             ltable=A,
                             rtable=B,
                             fk_ltable='l_id',
                             fk_rtable='r_id')  # labeled data
    # Convert C into a set of features using F
    L = em.extract_feature_vecs(C, feature_table=F, show_progress=False)
    # Fill in missing values with column's average
    L = em.impute_table(L,
                        exclude_attrs=['_id', 'l_id', 'r_id'],
                        strategy='mean')
    # Predict on L with trained matcher
    predictions = lg.predict(table=L,
                             exclude_attrs=['_id', 'l_id', 'r_id'],
                             append=True,
                             target_attr='predicted',
                             inplace=False,
                             return_probs=False,
                             probs_attr='proba')
    # Output the merged table (Basically what matches).
    # We start with rows from A that matches.
    # We then merge value from B into A.
    matched_pairs = predictions[predictions.predicted == 1]
    left_ids = matched_pairs['l_id'].to_frame()
    left_ids.columns = ['id']
    merged = pd.merge(A, left_ids, on='id')
    merged.set_index('id', inplace=True)
    B.set_index('id', inplace=True)
    black_list = {'a872', 'a987'}
    for pair in matched_pairs.itertuples():
        aid = pair.l_id
        bid = pair.r_id
        if (aid in black_list):
            continue
        # Title: keep title from A, if title from B is not an exact matched
        # from A, append B’s title to the alternative title field if B’s title
        # is not already in A’s alternative title.
        m_title = merged.loc[aid, 'title']
        a_title = merged.loc[aid, 'title']
        b_title = B.loc[bid, 'title']
        if (b_title != a_title):
            if pd.isnull(merged.loc[aid, 'alternative_titles']):
                merged.loc[aid, 'alternative_titles'] = b_title
            else:
                alt = set(merged.loc[aid, 'alternative_titles'].split(';'))
                if (b_title not in alt):
                    merged.loc[aid, 'alternative_titles'] += ';' + b_title
        for col in [
                'directors', 'writers', 'cast', 'genres', 'keywords',
                'languages', 'production_companies', 'production_countries'
        ]:
            merged.loc[aid, col] = merge_cell(merged.loc[aid, col], B.loc[bid,
                                                                          col])
        # Content rating: keep A
        # Release year: keep A
        # Opening_weekend_revenue: keep A
        # Run time
        m_runtime = int(
            (merged.loc[aid, 'run_time'] + B.loc[bid, 'run_time']) / 2)
        merged.loc[aid, 'run_time'] = m_runtime
        # Budget and Revenue
        for col in ['budget', 'revenue']:
            merged.loc[aid, col] = merge_money(merged.loc[aid, col],
                                               B.loc[bid, col])
        # Rating: take the average after converting B rating to scale 10.
        m_rating = (merged.loc[aid, 'rating'] + 0.1 * B.loc[bid, 'rating']) / 2
        merged.loc[aid, 'rating'] = m_rating
    merged.to_csv(FOLDER + 'E.csv', index=True)
Esempio n. 13
0
def main():
    # WELCOME TO MY MAGELLAN RUN SCRIPT
    print("\n-------------WELCOME TO MY MAGELLAN RUN SCRIPT-------------\n")

    # Get the datasets directory
    datasets_dir = 'B:\McMaster\CAS 764 - Advance Topics in Data Management\Project\Data\\'
    print("- Dataset directory: " + datasets_dir)
    print("- List of folders/files: ")
    print(os.listdir(datasets_dir))
    print("- Please enter new dataset folder name:")
    datasets_dir += input()
    print("- Dataset directory set to: " + datasets_dir)

    dateset_dir_files = os.listdir(datasets_dir)
    print("- List of files in dataset folder: ")
    print(dateset_dir_files)

    # Get the path of the input table A
    print("- Enter an index for Table A file (0-x):")
    file_index_A = input()
    filename_A = dateset_dir_files[int(file_index_A)]
    print("Table A file set to: " + filename_A)

    # Get the path of the input table
    path_A = datasets_dir + os.sep + filename_A

    # Get the path of the input table B
    print("- Enter an index for Table B file (0-x):")
    file_index_B = input()
    filename_B = dateset_dir_files[int(file_index_B)]
    print("Table B file set to: " + filename_B)

    # Get the path of the input table
    path_B = datasets_dir + os.sep + filename_B

    # Print Table A column names
    A = em.read_csv_metadata(path_A)
    print("- List of columns of Table A: ")
    print(list(A.columns))
    # Get the Table A id/primary key column name
    print('- Enter Table A primary key column index (ex. 0):')
    pk_A_index = input()
    pk_A = A.columns[int(pk_A_index)]

    # Print Table B column names
    B = em.read_csv_metadata(path_B)
    print("- List of columns of Table B: ")
    print(list(B.columns))
    # Get the Table B id/primary key column name
    print('- Enter Table B primary key column index (ex. 0):')
    pk_B_index = input()
    pk_B = A.columns[int(pk_A_index)]

    # READING TABLES AND SETTING METADATA
    print("\n-------------READING TABLES AND SETTING METADATA-------------\n")

    # Both read csv and set metadata id as ID column
    #A = em.read_csv_metadata(path_A, key=pk_A)
    #B = em.read_csv_metadata(path_B, key=pk_B)
    em.set_key(A, pk_A)
    em.set_key(B, pk_B)

    # Number of tables
    print('- Number of tuples in A: ' + str(len(A)))
    print('- Number of tuples in B: ' + str(len(B)))
    print('- Number of tuples in A X B (i.e the cartesian product): ' +
          str(len(A) * len(B)))

    # Print first 5 tuples of tables
    print(A.head())
    print(B.head())

    # Display the keys of the input tables
    print("- Table A primary key: " + em.get_key(A))
    print("- Table B primary key: " + em.get_key(B))

    # DOWNSAMPLING
    print("\n-------------DOWNSAMPING-------------\n")

    print("- Do you want to use downsampling? (y or n):")
    print("- Table A: " + str(len(A)) + ", Table B: " + str(len(B)))
    print("- NOTE: Recommended if both tables have 100K+ tuples.")
    is_downsample = input()
    if (is_downsample == 'y'):
        print("- Size of the downsampled tables (ex. 200):")
        downsample_size = input()
        # If the tables are large we can downsample the tables like this
        A1, B1 = em.down_sample(A, B, downsample_size, 1, show_progress=False)
        print("- Length of Table A1" + len(A1))
        print("- Length of Table B1" + len(B1))

    # BLOCKING
    print("\n-------------BLOCKING-------------\n")

    print("- Do you want to use blocking? (y or n):")
    is_blocking = input()
    if (is_blocking == 'y'):

        # Check if the 2 tables column names are the same
        if (list(A.columns) == list(B.columns)):
            C_attr_eq = []  # Attr Equ blocker result list
            C_overlap = []  # Overlap blocker result list
            C_blackbox = []  # BlackBox blocker result list

            # Left and right table attribute prefixes
            l_prefix = "ltable_"
            r_prefix = "rtable_"

            print("\n- List of columns: ")
            print(list(A.columns))
            # Labeling output table column selection
            print(
                "\n- Enter the indexes of columns that you want to see in labeling table (0-"
                + str(len(A.columns) - 1) + "):")
            out_attr = []
            for i in range(1, len(A.columns)):
                print("- Finish with empty character(enter+enter) " + str(i))
                add_to_attr = input()
                if (add_to_attr == ''):
                    break
                # Get indexes from user and add columns into out_attr list
                out_attr.append(A.columns[int(add_to_attr)])

            # Print output attributes
            print(out_attr)

            # Loop for adding/combining new blockers
            while (True):
                # Blocker selection
                print(
                    "\n- Do yo want to use Attribute Equivalence[ab] (same), Overlap[ob] (similar) or Blackbox[bb] blocker:"
                )
                blocker_selection = input()

                # ----- Attribute Equivalence Blocker -----
                if (blocker_selection == 'ab'):
                    # Create attribute equivalence blocker
                    ab = em.AttrEquivalenceBlocker()
                    # Counter for indexes
                    attr_eq_counter = 0
                    # Check if Overlap Blocker used before
                    if (C_overlap and not C_overlap[-1].empty):
                        print(
                            "\n- Do you want to work on Overlap Blocker candidate set or not (y or n):"
                        )
                        use_cand_set = input()
                        if (use_cand_set == 'y'):
                            C_attr_eq.append(
                                C_overlap[-1])  # Add last output of ob
                            attr_eq_counter += 1  # For skipping block_table function in first time

                    # Check if BlackBox Blocker used before
                    if (C_blackbox and not C_blackbox[-1].empty):
                        print(
                            "\n- Do you want to work on BlackBox Blocker candidate set or not (y or n):"
                        )
                        use_cand_set = input()
                        if (use_cand_set == 'y'):
                            C_attr_eq.append(
                                C_blackbox[-1])  # Add last output of ob
                            attr_eq_counter += 1  # For skipping block_table function in first time

                    # Loop for adding more columns/attributes into Attr Equ blocker
                    while (True):
                        # List column names
                        print("\n- List of columns: ")
                        print(list(A.columns))
                        # Get blocking attribute/column
                        print(
                            "\n- Which column (w/ index) to use for equivalence blocking? (ex. 1):"
                        )
                        blocking_col_index = input()
                        blocking_col = A.columns[int(blocking_col_index)]

                        print(
                            "\n- Do you want to add missing values into blocking? (y or n):"
                        )
                        add_missing_val = input()
                        if (add_missing_val == 'y'):
                            add_missing_val = True
                        else:
                            add_missing_val = False

                        # First time using Attr Equ blocker, use A and B
                        if (attr_eq_counter == 0):
                            # Block using selected (blocking_col) attribute on A and B
                            C_attr_eq.append(
                                ab.block_tables(A,
                                                B,
                                                blocking_col,
                                                blocking_col,
                                                l_output_attrs=out_attr,
                                                r_output_attrs=out_attr,
                                                l_output_prefix=l_prefix,
                                                r_output_prefix=r_prefix,
                                                allow_missing=add_missing_val,
                                                n_jobs=-1))
                        # Not first time, add new constraint into previous candidate set
                        else:
                            # Block using selected (blocking_col) attribute on previous (last=-1) candidate set
                            C_attr_eq.append(
                                ab.block_candset(C_attr_eq[-1],
                                                 l_block_attr=blocking_col,
                                                 r_block_attr=blocking_col,
                                                 allow_missing=add_missing_val,
                                                 n_jobs=-1,
                                                 show_progress=False))

                        # DEBUG BLOCKING
                        print(
                            "\n- Attribute Equivalence Blocker Debugging...\n")
                        # Debug last blocker output
                        dbg = em.debug_blocker(C_attr_eq[-1],
                                               A,
                                               B,
                                               output_size=200,
                                               n_jobs=-1)

                        # Display first few tuple pairs from the debug_blocker's output
                        print("\n- Blocking debug results:")
                        print(dbg.head())

                        attr_eq_counter += 1  # Increase the counter

                        # Continue to use Attribute Equivalence Blocker or not
                        print("\n- Length of candidate set: " +
                              str(len(C_attr_eq[-1])))
                        print(
                            "- Add another column into Attribute Equivalence Blocker[a] OR Reset last blocker's output[r]:"
                        )
                        ab_next_operation = input()
                        if (not ab_next_operation.islower()):
                            ab_next_operation = ab_next_operation.lower(
                            )  # Lower case
                        # Continue using Attribute Equivalence Blocker
                        if (ab_next_operation == 'a'):
                            continue
                        # Reset/remove last blocker's output from candidate set list
                        elif (ab_next_operation == 'r'):
                            del C_attr_eq[-1]
                            print("\n- Last blocker output removed!")
                            print(
                                "- Continue to use Attribute Equivalence Blocker (y or n):"
                            )
                            ab_next_operation = input()
                            if (ab_next_operation == 'n'):
                                break
                        # Finish Attribute Equivalence Blocker
                        else:
                            break

                # ----- Overlap Blocker -----
                elif (blocker_selection == 'ob'):
                    # Create attribute equivalence blocker
                    ob = em.OverlapBlocker()
                    # Counter for indexes
                    overlap_counter = 0
                    # Check if Attribute Equivalence Blocker used before
                    if (C_attr_eq and not C_attr_eq[-1].empty):
                        print(
                            "\n- Do you want to work on Attribute Equivalence Blocker candidate set or not (y or n):"
                        )
                        use_cand_set = input()
                        if (use_cand_set == 'y'):
                            C_overlap.append(
                                C_attr_eq[-1])  # Add last output of ab
                            overlap_counter += 1  # For skipping block_table function in first time

                    # Check if BlackBox Blocker used before
                    if (C_blackbox and not C_blackbox[-1].empty):
                        print(
                            "\n- Do you want to work on BlackBox Blocker candidate set or not (y or n):"
                        )
                        use_cand_set = input()
                        if (use_cand_set == 'y'):
                            C_overlap.append(
                                C_blackbox[-1])  # Add last output of ob
                            overlap_counter += 1  # For skipping block_table function in first time

                    # Loop for adding more columns/attributes into Overlap blocker
                    while (True):
                        # List column names
                        print("- List of columns: ")
                        print(list(A.columns))
                        # Get blocking attribute/column
                        print(
                            "- Which column (w/ index) to use for overlap blocking? (ex. 1):"
                        )
                        blocking_col_index = input()
                        blocking_col = A.columns[int(blocking_col_index)]

                        print(
                            "\n- Do you want to add missing values into blocking? (y or n):"
                        )
                        add_missing_val = input()
                        if (add_missing_val == 'y'):
                            add_missing_val = True
                        else:
                            add_missing_val = False

                        print("\n- Use words as a token? (y or n):")
                        use_world_level = input()
                        if (use_world_level == 'y'):
                            use_world_level = True
                            q_gram_value = None
                        else:
                            use_world_level = False
                            print(
                                "\n- Q-gram q value (ex. 2 --> JO HN SM IT H):"
                            )
                            q_gram_value = input()
                            q_gram_value = int(q_gram_value)

                        print(
                            "\n- Enter the overlap size (# of tokens that overlap):"
                        )
                        overlap_size = input()
                        overlap_size = int(overlap_size)

                        print(
                            "\n- Do you want to remove (a, an, the) from token set? (y or n):"
                        )
                        use_stop_words = input()
                        if (use_stop_words == 'y'):
                            use_stop_words = True
                        else:
                            use_stop_words = False

                        # First time using Overlap blocker, use A and B
                        if (overlap_counter == 0):
                            # Block using selected (blocking_col) attribute on A and B
                            C_overlap.append(
                                ob.block_tables(A,
                                                B,
                                                blocking_col,
                                                blocking_col,
                                                l_output_attrs=out_attr,
                                                r_output_attrs=out_attr,
                                                l_output_prefix=l_prefix,
                                                r_output_prefix=r_prefix,
                                                rem_stop_words=use_stop_words,
                                                q_val=q_gram_value,
                                                word_level=use_world_level,
                                                overlap_size=overlap_size,
                                                allow_missing=add_missing_val,
                                                n_jobs=-1))
                        # Not first time, add new constraint into previous candidate set
                        else:
                            # Block using selected (blocking_col) attribute on previous (last=-1) candidate set
                            C_overlap.append(
                                ob.block_candset(C_overlap[-1],
                                                 l_overlap_attr=blocking_col,
                                                 r_overlap_attr=blocking_col,
                                                 rem_stop_words=use_stop_words,
                                                 q_val=q_gram_value,
                                                 word_level=use_world_level,
                                                 overlap_size=overlap_size,
                                                 allow_missing=add_missing_val,
                                                 n_jobs=-1,
                                                 show_progress=False))

                        # DEBUG BLOCKING
                        print("\n- Overlap Blocker Debugging...\n")
                        # Debug last blocker output
                        dbg = em.debug_blocker(C_overlap[-1],
                                               A,
                                               B,
                                               output_size=200,
                                               n_jobs=-1)

                        # Display first few tuple pairs from the debug_blocker's output
                        print("\n- Blocking debug results:")
                        print(dbg.head())

                        overlap_counter += 1  # Increase the counter

                        # Continue to use Attribute Equivalence Blocker or not
                        print("\n- Length of candidate set: " +
                              str(len(C_overlap[-1])))
                        print(
                            "- Add another column into Overlap Blocker[a] OR Reset last blocker's output[r]:"
                        )
                        ob_next_operation = input()
                        if (not ob_next_operation.islower()):
                            ob_next_operation = ob_next_operation.lower(
                            )  # Lower case
                        # Continue using Overlap Blocker
                        if (ob_next_operation == 'a'):
                            continue
                        # Reset/remove last blocker's output from candidate set list
                        elif (ob_next_operation == 'r'):
                            del C_overlap[-1]
                            print("\n- Last blocker output removed!")
                            print(
                                "- Continue to use Overlap Blocker (y or n):")
                            ob_next_operation = input()
                            if (ob_next_operation == 'n'):
                                break
                        # Finish Overlap Blocker
                        else:
                            break

                # ----- BlackBox Blocker -----
                elif (blocker_selection == 'bb'):
                    # Create attribute equivalence blocker
                    bb = em.BlackBoxBlocker()
                    # Counter for indexes
                    blackbox_counter = 0
                    # Check if Overlap Blocker used before
                    if (C_attr_eq and not C_attr_eq[-1].empty):
                        print(
                            "\n- Do you want to work on Attribute Equivalence Blocker candidate set or not (y or n):"
                        )
                        use_cand_set = input()
                        if (use_cand_set == 'y'):
                            C_blackbox.append(
                                C_attr_eq[-1])  # Add last output of ob
                            blackbox_counter += 1  # For skipping block_table function in first time

                    # Check if Overlap Blocker used before
                    if (C_overlap and not C_overlap[-1].empty):
                        print(
                            "\n- Do you want to work on Overlap Blocker candidate set or not (y or n):"
                        )
                        use_cand_set = input()
                        if (use_cand_set == 'y'):
                            C_blackbox.append(
                                C_overlap[-1])  # Add last output of ob
                            blackbox_counter += 1  # For skipping block_table function in first time

                    # Loop for adding more columns/attributes into BlackBox blocker
                    while (True):
                        # Set function
                        bb.set_black_box_function(
                            number_10_percent_comparision)

                        # First time using Overlap blocker, use A and B
                        if (overlap_counter == 0):
                            # Block on A and B
                            C_blackbox.append(
                                bb.block_tables(A,
                                                B,
                                                l_output_attrs=out_attr,
                                                r_output_attrs=out_attr,
                                                l_output_prefix=l_prefix,
                                                r_output_prefix=r_prefix,
                                                n_jobs=-1,
                                                show_progress=False))
                        # Not first time, add new constraint into previous candidate set
                        else:
                            # Block on previous (last=-1) candidate set
                            C_blackbox.append(
                                bb.block_candset(C_blackbox[-1],
                                                 n_jobs=-1,
                                                 show_progress=False))

                        # DEBUG BLOCKING
                        print("\n- BlackBox Blocker Debugging...\n")
                        # Debug last blocker output
                        dbg = em.debug_blocker(C_blackbox[-1],
                                               A,
                                               B,
                                               output_size=200,
                                               n_jobs=-1)

                        # Display first few tuple pairs from the debug_blocker's output
                        print("\n- Blocking debug results:")
                        print(dbg.head())

                        blackbox_counter += 1  # Increase the counter

                        # Continue to use Attribute Equivalence Blocker or not
                        print("\n- Length of candidate set: " +
                              str(len(C_blackbox[-1])))
                        print(
                            "- Add another column into BlackBox Blocker[a] OR Reset last blocker's output[r]:"
                        )
                        bb_next_operation = input()
                        if (not bb_next_operation.islower()):
                            bb_next_operation = bb_next_operation.lower(
                            )  # Lower case
                        # Continue using Overlap Blocker
                        if (bb_next_operation == 'a'):
                            continue
                        # Reset/remove last blocker's output from candidate set list
                        elif (bb_next_operation == 'r'):
                            del C_blackbox[-1]
                            print("\n- Last blocker output removed!")
                            print(
                                "- Continue to use BlackBox Blocker (y or n):")
                            bb_next_operation = input()
                            if (bb_next_operation == 'n'):
                                break
                        # Finish BlackBox Blocker
                        else:
                            break

                print("\n- Do you want to add/use another blocker? (y or n):")
                blocker_decision = input()
                if (blocker_decision == 'n'):
                    break

            print(
                "\n- Which blocker output you want to use? (Attr Equ-ab, Overlap-ob, BlackBox-bb, Union-un)"
            )
            blocker_output_selection = input()
            # Attribute Equ
            if (blocker_output_selection == "ab"):
                C = C_attr_eq[-1]
            # Overlap
            elif (blocker_output_selection == "ob"):
                C = C_overlap[-1]
                # Overlap
            elif (blocker_output_selection == "bb"):
                C = C_blackbox[-1]
            # Union of blockers
            elif (blocker_output_selection == "un"):
                # Combine/union blockers candidate sets
                print("\n- TODO: Unions Attr Equ and Overlap only!")
                if (C_attr_eq and C_overlap and not C_attr_eq[-1].empty and
                        not C_overlap[-1].empty):  # Both blocker types used
                    C = em.combine_blocker_outputs_via_union(
                        [C_attr_eq[-1], C_overlap[-1]])
                    print(
                        "\n- Blockers candidate set outputs combined via union."
                    )
                else:  # Error
                    C = []
                    print(
                        "\n- ERROR: Candidate set C is empty! Check blockers' results."
                    )
            # Error
            else:
                C = []
                print(
                    "\n- ERROR: Candidate set C is empty! Check blockers' results."
                )
            print("\n- Length of C: " + str(len(C)))

        else:
            print(
                "\n- 2 Tables column names are different, they must be the same"
            )
            print(list(A.columns))
            print(list(B.columns))

    # SAMPLING&LABELING
    print("\n-------------SAMPLING&LABELING-------------\n")

    print("- Choose sampling size (eg. 450):")
    sampling_size = input()
    while (int(sampling_size) > len(C)):
        print("- Sampling size cannot be bigger than " + str(len(C)))
        sampling_size = input()

    # Sample  candidate set
    S = em.sample_table(C, int(sampling_size))

    print("- New window will pop-up for " + sampling_size + " sized table.")
    print("- If there is a match, change tuple's label value to 1")

    # Label S
    G = em.label_table(S, 'label')

    #DEVELOPMENT AND EVALUATION
    print("\n-------------DEVELOPMENT AND EVALUATION-------------\n")

    # Split S into development set (I) and evaluation set (J)
    IJ = em.split_train_test(G, train_proportion=0.7, random_state=0)
    I = IJ['train']
    J = IJ['test']

    #SELECTING THE BEST MATCHER
    print("\n-------------SELECTING THE BEST MATCHER-------------\n")

    # Create a set of ML-matchers
    dt = em.DTMatcher(name='DecisionTree', random_state=0)
    svm = em.SVMMatcher(name='SVM', random_state=0)
    rf = em.RFMatcher(name='RF', random_state=0)
    lg = em.LogRegMatcher(name='LogReg', random_state=0)
    ln = em.LinRegMatcher(name='LinReg')
    nb = em.NBMatcher(name='NaiveBayes')

    print(
        "\n- 6 different ML-matchers created: DL, SVM, RF, LogReg, LinReg, NB")

    print("\n- Creating features...")
    # Generate features
    feature_table = em.get_features_for_matching(
        A, B, validate_inferred_attr_types=False)

    print("\n- Features list:")
    # List the names of the features generated
    print(feature_table['feature_name'])

    print("\n- Converting the development set to feature vectors...")
    # Convert the I into a set of feature vectors using feature_table
    H = em.extract_feature_vecs(I,
                                feature_table=feature_table,
                                attrs_after='label',
                                show_progress=False)

    print("\n- Feature table first rows:")
    # Display first few rows
    print(H.head())

    # Primary key of tables = prefix + pk = l_id, r_id
    ltable_pk = l_prefix + pk_A
    rtable_pk = r_prefix + pk_B

    # Check if the feature vectors contain missing values
    # A return value of True means that there are missing values
    is_missing_values = any(pd.notnull(H))
    print("\n- Does feature vector have missing values: " +
          str(is_missing_values))
    if (is_missing_values):
        # Impute feature vectors with the mean of the column values.
        H = em.impute_table(
            H,
            exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'],
            strategy='mean',
            val_all_nans=0.0)
        #print("\n- Feature table first rows:")
        # Display first few rows
        #print(H.head())
        print("- Impute table function used for missing values.")

    print("\n- Selecting the best matcher using cross-validation...")
    # Select the best ML matcher using CV
    result = em.select_matcher(
        matchers=[dt, rf, svm, ln, lg, nb],
        table=H,
        exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'],
        k=5,
        target_attr='label',
        metric_to_select_matcher='f1',
        random_state=0)
    print("\n- Results:")
    print(result['cv_stats'])

    #DEBUGGING THE MATCHER
    print("\n-------------DEBUGGING THE MATCHER-------------\n")

    #  Split feature vectors into train and test
    UV = em.split_train_test(H, train_proportion=0.5)
    U = UV['train']
    V = UV['test']

    # Debug decision tree using GUI
    em.vis_debug_rf(rf,
                    U,
                    V,
                    exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'],
                    target_attr='label')

    print("\n- Do you want to add another feature?")

    H = em.extract_feature_vecs(I,
                                feature_table=feature_table,
                                attrs_after='label',
                                show_progress=False)

    # Check if the feature vectors contain missing values
    # A return value of True means that there are missing values
    is_missing_values = any(pd.notnull(H))
    print("\n- Does feature vector have missing values: " +
          str(is_missing_values))
    if (is_missing_values):
        # Impute feature vectors with the mean of the column values.
        H = em.impute_table(
            H,
            exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'],
            strategy='mean')
        print("\n- Feature table first rows:")
        # Display first few rows
        print(H.head())

    # Select the best ML matcher using CV
    result = em.select_matcher(
        [dt, rf, svm, ln, lg, nb],
        table=H,
        exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'],
        k=5,
        target_attr='label',
        metric_to_select_matcher='f1',
        random_state=0)

    print("\n- Results:")
    print(result['cv_stats'])

    #EVALUATING THE MATCHING OUTPUT
    print("\n-------------EVALUATING THE MATCHING OUTPUT-------------\n")

    print("\n- Converting the evaluation set to feature vectors...")
    # Convert J into a set of feature vectors using feature table
    L = em.extract_feature_vecs(J,
                                feature_table=feature_table,
                                attrs_after='label',
                                show_progress=False)

    # Check if the feature vectors contain missing values
    # A return value of True means that there are missing values
    is_missing_values = any(pd.notnull(L))
    print("\n- Does feature vector have missing values: " +
          str(is_missing_values))
    if (is_missing_values):
        # Impute feature vectors with the mean of the column values.
        L = em.impute_table(
            L,
            exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'],
            strategy='mean')
        print("\n- Feature table first rows:")
        # Display first few rows
        print(L.head())

    print("\n- Training the selected matcher...")
    # Train using feature vectors from I
    rf.fit(table=H,
           exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'],
           target_attr='label')

    print("\n- Predicting the matches...")
    # Predict on L
    predictions = rf.predict(
        table=L,
        exclude_attrs=['_id', ltable_pk, rtable_pk, 'label'],
        append=True,
        target_attr='predicted',
        inplace=False)

    print("\n- Evaluating the prediction...")
    # Evaluate the predictions
    eval_result = em.eval_matches(predictions, 'label', 'predicted')
    print(em.print_eval_summary(eval_result))

    print("\n- Time elapsed:")
    print(datetime.now() - startTime)

    print("\n-------------END-------------\n")