Esempio n. 1
0
 def test_analytical_vega(self):
     while self.tdi.has_next():
         row = self.tdi.next_row()
         S, K, t, r, sigma = row['S'], row['K'], row['t'], row['R'], row[
             'v']
         self.assertAlmostEqual(analytical.vega('c', S, K, t, r, sigma),
                                row['CV'] * .01,
                                delta=0.000001)
         self.assertAlmostEqual(analytical.vega('p', S, K, t, r, sigma),
                                row['PV'] * .01,
                                delta=0.000001)
Esempio n. 2
0
    def test_analytical_vega(self):
        S = 49
        K = 50
        sigma = .2
        r = .05
        t = 0.3846

        flag = 'p'
        c_put = c_analytical.vega(flag, S, K, t, r, sigma)
        py_put = py_analytical.vega(flag, S, K, t, r, sigma)
        self.assertTrue(almost_equal(c_put, py_put))

        flag = 'c'
        c_call = c_analytical.vega(flag, S, K, t, r, sigma)
        py_call = py_analytical.vega(flag, S, K, t, r, sigma)
        self.assertTrue(almost_equal(c_call, py_call))
Esempio n. 3
0
 def test_vega(self):
     vegas = [
         vega(flag, S, K, t, r, sigma)
         for flag, S, K, t, r, sigma in self.arg_combinations
     ]
     nvegas = [
         nvega(flag, S, K, t, r, sigma)
         for flag, S, K, t, r, sigma in self.arg_combinations
     ]
     self.assertTrue(self.diff_mean(vegas, nvegas) < self.epsilon)
Esempio n. 4
0
def Calculate_vega(each_row):
    if each_row['Implied_Volatility'] == 0:
        measure= 0
    else:
        try:
            measure = bs_a.vega(flag=each_row['CallOrPut'], S=each_row['Spot'], K=each_row['Strike_Price'],
                                 t=each_row['Days_to_Expiry']/365, r=.1,sigma=each_row['Implied_Volatility'])
        except:
            measure = 0
    print("Vega", end=" ")
    return measure
Esempio n. 5
0
 def calc_all(self, b):
     h = self.all_set(b)
     if not h: return False
     if not h.get("sigma"): self.civ(h)
     if not h.get("sigma"): return False
     a = (h["flag"], h["F"], h["K"], h["t"], h["r"], h["sigma"])
     r = self.rounding
     h["price"] = round(oprice(*a), r)
     h["delta"] = round(delta(*a), r)
     h["gamma"] = round(gamma(*a) * 100, r)
     h["vega"] = round(vega(*a), r)
     return h
Esempio n. 6
0
    def vega(self, option_obj, asset_price, timestamp, expiration,
             call_put_flag):
        flag = call_put_flag
        S = asset_price
        K = option_obj.strike
        t = self.time_2_expiration(timestamp, expiration)
        r = self.risk_free_rate
        sigma = option_obj.sigma

        vega = vollib_greeks.vega(flag, S, K, t, r, sigma)

        return vega
Esempio n. 7
0
 def update_vega(self, asset_code):
     flag = asset_code[0].lower()
     S = self.mid_dict['IDX#PHX']
     if len(asset_code) == 6:
         K = int(asset_code[1:3])
     elif len(asset_code) == 7:
         K = int(asset_code[1:4])
     t = (63 - (time.time() - self.start_time) /
          (900 / 21)) / 252  #time to expiration in years
     r = 0
     price = self.mid_dict[asset_code]
     sigma = IV(price, S, K, r, t, flag) * np.sqrt(252)
     return bsga.vega(flag, S, K, t, r, sigma)
Esempio n. 8
0
def calculateAllGreeks(ticker, date, type, strike):
        S = si.get_live_price(ticker)
        K = strike
        sigma = calculateAnnualizedVolatility(ticker)
        t = optionExpiration(date)
        r = calculateTreasuryYield(date)
        if type == 'Call' or type == "call" or type == "C" or type == 'c':
            flag = 'c'
        else:
            flag = 'p'
        dlta = delta(flag, S, K, t, r, sigma)
        gam = gamma(flag, S, K, t, r, sigma)
        thta = theta(flag, S, K, t, r, sigma)
        vga = vega(flag, S, K, t, r, sigma)
        rh = rho(flag, S, K, t, r, sigma)
        return ({"delta": dlta, "gamma": gam, "theta": thta, "vega": vga, "rho": rh})
Esempio n. 9
0
def calculateGreek(ticker, date, type, strike, greek):
        grk = 0
        S = si.get_live_price(ticker)
        K = strike
        sigma = calculateAnnualizedVolatility(ticker)
        t = optionExpiration(date)
        r = calculateTreasuryYield(date)
        flag = ''
        if type == 'Call' or type == "call" or type == "C" or type == 'c':
            flag = 'c'
        flag = 'p'
        if greek == "Delta" or greek == "delta":
            grk = delta(flag, S, K, t, r, sigma)
        elif greek == "Gamma" or greek == "gamma":
            grk = gamma(flag, S, K, t, r, sigma)
        elif greek == "Theta" or greek == "theta":
            grk = theta(flag, S, K, t, r, sigma)
        elif greek == "Vega" or greek == "vega":
            grk = vega(flag, S, K, t, r, sigma)
        else:
            grk = rho(flag, S, K, t, r, sigma)
        return grk
def precompute(table, computedate, underlying, include_riskfree):

    db = psycopg2.connect(host="localhost",
                          user=settings.db_username,
                          password=settings.db_password,
                          database="optiondata")
    cur2 = db.cursor()

    underlying_fragment = ""
    if (underlying != "*"):
        underlying_fragment = "underlying_symbol = '" + underlying + "' AND "

    date_fragment = ""
    if (computedate != "*"):
        date_fragment = "quote_date = '" + str(computedate) + "' AND "

    query = "SELECT id, quote_date, underlying_mid_1545, mid_1545, expiration, strike, option_type FROM " + \
        table + " WHERE " + underlying_fragment + date_fragment + "iv IS NULL"

    cur2.execute(query)
    result = cur2.fetchall()

    print(
        str(computedate) + " " + str(underlying) + ": " + str(len(result)) +
        " results")

    bulkrows = []
    if (len(result) > 0):
        for row in result:

            rowid = row[0]
            quote_date = row[1]
            underlying_mid_1545 = float(row[2])
            mid_1545 = float(row[3])
            expiration = row[4]
            strike = float(row[5])
            option_type = row[6]

            expiration_time = datetime.datetime.combine(
                expiration, datetime.time(16, 0))
            remaining_time_in_years = util.remaining_time(
                quote_date, expiration_time)

            rf = util.interest
            if include_riskfree:
                rf = util.get_riskfree_libor(quote_date,
                                             remaining_time_in_years)

            try:
                iv = implied_volatility.implied_volatility(
                    mid_1545, underlying_mid_1545, int(strike),
                    remaining_time_in_years, rf, option_type)
            except:
                iv = 0.001

            try:
                bs_price_bid_ask = black_scholes(option_type,
                                                 underlying_mid_1545, strike,
                                                 remaining_time_in_years, rf,
                                                 iv)
            except:
                bs_price_bid_ask = 0.001

            try:
                delta = analytical.delta(option_type, underlying_mid_1545,
                                         strike, remaining_time_in_years, rf,
                                         iv) * 100
            except:
                delta = 0.001

            try:
                theta = analytical.theta(option_type, underlying_mid_1545,
                                         strike, remaining_time_in_years, rf,
                                         iv) * 100
            except:
                theta = 0.001

            try:
                vega = analytical.vega(option_type, underlying_mid_1545,
                                       strike, remaining_time_in_years, rf,
                                       iv) * 100
            except:
                vega = 0.001

            bulkrows.append({
                'iv': iv,
                'bs_price_bid_ask': bs_price_bid_ask,
                'delta': delta,
                'theta': theta,
                'vega': vega,
                'rowid': rowid
            })

        psycopg2.extras.execute_batch(
            cur2,
            """UPDATE """ + table +
            """ SET iv=%(iv)s, bs_price_bid_ask=%(bs_price_bid_ask)s, delta=%(delta)s, theta=%(theta)s, vega=%(vega)s WHERE id=%(rowid)s""",
            bulkrows,
            page_size=100)
        db.commit()

        db.close()
Esempio n. 11
0
    def weighted_iv(cls, options, term, flag='c'):
        if flag == 'c':
            # Call fields
            bid = 'CallBid'
            ask = 'CallAsk'
            last_sale = 'CallLastSale'
        else:
            # Put fields
            bid = 'PutBid'
            ask = 'PutAsk'
            last_sale = 'PutLastSale'

        option_iv = pd.Series(pd.np.zeros(len(options.data.index)),
                              index=options.data.index,
                              name='OptionImpliedVolatility')
        for i in options.data.index:
            t = options.data.Expiration[i] / 365.0
            price = (options.data[bid][i] + options.data[ask][i]) / 2.0
            option_iv[i] = cls.calculate(options.underlying_price,
                                         options.data.Strike[i],
                                         t,
                                         price,
                                         flag=flag)
        data = options.data.join(option_iv)

        def _find_expiration_dates(df, term):
            """
            Find two expiration dates closest to given number of days, front and back month.
            """
            expirations = df[['Expiration'
                              ]].drop_duplicates().reset_index(drop=True)
            back_expirations = expirations[(expirations.Expiration >
                                            term)].copy()
            front_expirations = expirations[(expirations.Expiration <
                                             term)].copy()
            if back_expirations.size > 0 and front_expirations.size > 0:
                front_back_values = []
                for frame in [
                        front_expirations,
                        back_expirations,
                ]:
                    frame['Difference'] = frame['Expiration'].apply(
                        lambda value: abs(value - term))
                    front_back_values.append(
                        frame.sort_values(
                            by=['Difference']).head(1)['Expiration'].values[0])
                return front_back_values
            return None, None

        front, back = _find_expiration_dates(data, term)
        if not front or not back:
            return 0.0

        def _find_closest_strikes(df,
                                  front,
                                  back,
                                  underlying_price,
                                  number_of_strikes=4):
            """
            We take 4 (number_of_strikes) options contracts with strikes
            nearest to current stock price. We'll use this list to
            calculate IV Index for the front and back months.
            """
            strike_expiration_df = df[(df.Expiration == front) |
                                      (df.Expiration == back)][[
                                          'Strike', 'Expiration'
                                      ]].drop_duplicates().reset_index(
                                          drop=True)
            front_back_lists = []
            for value in (
                    front,
                    back,
            ):
                s1 = strike_expiration_df[(
                    strike_expiration_df.Expiration == value)]['Strike'].apply(
                        lambda item: abs(item - underlying_price)).reset_index(
                            drop=True)
                s2 = df[(df.Expiration == value
                         )]['Strike'].drop_duplicates().reset_index(drop=True)
                front_back_lists.append(
                    pd.DataFrame({
                        'Difference': s1,
                        'Strike': s2
                    }).reset_index(drop=True).sort_values(by='Difference').
                    head(number_of_strikes)['Strike'].values)
            return front_back_lists

        front_strikes, back_strikes = _find_closest_strikes(
            data, front, back, options.underlying_price)
        # data = data[(data.OptionImpliedVolatility > .01) & (data.OptionImpliedVolatility < 1) &
        # TODO: Removed IV < 1 filter. IV can be greater than 100%. Looking at you AyyMD ;)
        data = data[(data.OptionImpliedVolatility > .01) & ((
            (data.Expiration == front) & (data.Strike.isin(front_strikes))) | (
                (data.Expiration == back) & (data.Strike.isin(back_strikes))))
                    & ((data[bid] > 0) | (data[ask] > 0))]
        # ) & (data[last_sale] > 0) & (data[bid] > 0) & (data[ask] > 0)]
        # TODO: Do we care about filtering out options that are not active (last_sale == 0). For example,
        #       if we keep only last_sale > 0 strikes we may end up without options to process. This will
        #       cause vega weights calculations to fail.
        # TODO: Sometimes bid or ask are 0, so make sure average is calculated correctly.

        df = pd.DataFrame()
        for index, items in data[[
                'Strike', 'Expiration'
        ]].drop_duplicates().reset_index(drop=True).iterrows():
            values = data[(data.Strike == items['Strike'])
                          & (data.Expiration == items['Expiration'])][[
                              'OptionImpliedVolatility', ask, bid
                          ]].mean()
            values['Strike'] = items['Strike']
            values['Expiration'] = items['Expiration']
            values['Price'] = (
                values[bid] + values[ask]
            ) / 2.0 if values[ask] > 0 and values[bid] > 0 else max(
                values[ask], values[bid])
            values['Vega'] = vega(flag, options.underlying_price,
                                  items['Strike'], items['Expiration'] / 365.0,
                                  RISK_FREE_INTEREST_RATE,
                                  values['OptionImpliedVolatility'])
            df = df.append(values, ignore_index=True)

        # Liquidity considerations in estimating implied volatility (Rohini Grover and Susan Thomas)
        #
        # Interpolation scheme:
        #
        # vix = 100 * [ weight_t1 * ( (Nc2 - 30) / (Nc2 - Nc1) ) + weight_t2 * ( (30 - Nc1) / (Nc2 - Nc1) ) ]
        #
        # Where weight_ti are implied volatilities and Nci is the number of calendar days to
        # expiration. Here, i = 1, 2 for the near and next month respectively.

        def _front_vega_weights(df, front, back, term):
            """
            This function will calculate weighted average for the front month,
            where weighting is done by Vega (option price sensitivity to a
            change in Implied Volatility).
            """
            vegas_ivs = 0.0
            vegas = 0.0
            for index, items in df[(df.Expiration == front)].iterrows():
                vegas_ivs += items['Vega'] * items['OptionImpliedVolatility']
                vegas += items['Vega']
            vw = vegas_ivs / vegas
            expiry_sqrt = (math.sqrt(back) - math.sqrt(term)) / (
                math.sqrt(back) - math.sqrt(front))
            return vw, expiry_sqrt

        def _back_vega_weights(df, front, back, term):
            """
            This function will calculate weighted average for the back month,
            where weighting is done by Vega (option price sensitivity to a
            change in Implied Volatility).
            """
            vegas_ivs = 0.0
            vegas = 0.0
            for index, items in df[(df.Expiration == back)].iterrows():
                vegas_ivs += items['Vega'] * items['OptionImpliedVolatility']
                vegas += items['Vega']
            vw = vegas_ivs / vegas
            expiry_sqrt = (math.sqrt(term) - math.sqrt(front)) / (
                math.sqrt(back) - math.sqrt(front))
            return vw, expiry_sqrt

        vw1, i1 = _front_vega_weights(df, front, back, term)
        vw2, i2 = _back_vega_weights(df, front, back, term)

        return i1 * vw1 + i2 * vw2
Esempio n. 12
0
def precompute(underlying, include_riskfree):

    done = False
    bulksize = 100000
    counter = 0

    print("precompute: " + str(underlying))
    print()

    while not done:

        db = psycopg2.connect(host="localhost",
                              user=settings.db_username,
                              password=settings.db_password,
                              database="optiondata")
        cur2 = db.cursor()

        print("Query for next " + str(bulksize) + " items to precompute ")
        query = "SELECT id, quote_date, underlying_mid_1545, mid_1545, expiration, strike, option_type FROM optiondata WHERE underlying_symbol = '" + underlying + "' AND iv IS NULL LIMIT " + str(
            bulksize)
        cur2.execute(query)
        result = cur2.fetchall()
        print(str(len(result)) + " items to precompute")
        if len(result) == 0:
            done = True
            print("Done precomputing")
            print()

        bulkrows = []
        for row in result:

            rowid = row[0]
            quote_date = row[1]
            underlying_mid_1545 = float(row[2])
            mid_1545 = float(row[3])
            expiration = row[4]
            strike = float(row[5])
            option_type = row[6]

            expiration_time = datetime.datetime.combine(
                expiration, datetime.time(16, 0))
            remaining_time_in_years = util.remaining_time(
                quote_date, expiration_time)

            rf = util.interest
            if include_riskfree:
                rf = util.get_riskfree_libor(quote_date,
                                             remaining_time_in_years)

            try:
                iv = implied_volatility.implied_volatility(
                    mid_1545, underlying_mid_1545, int(strike),
                    remaining_time_in_years, rf, option_type)
                delta = analytical.delta(option_type, underlying_mid_1545,
                                         strike, remaining_time_in_years, rf,
                                         iv) * 100
                theta = analytical.theta(option_type, underlying_mid_1545,
                                         strike, remaining_time_in_years, rf,
                                         iv) * 100
                vega = analytical.vega(option_type, underlying_mid_1545,
                                       strike, remaining_time_in_years, rf,
                                       iv) * 100

            except:
                iv = 0.001
                delta = 0.001
                theta = 0.001
                vega = 0.001

            bulkrows.append({
                'iv': iv,
                'delta': delta,
                'theta': theta,
                'vega': vega,
                'rowid': rowid
            })
            counter += 1

            if (((counter % 1000) == 0) or ((len(result) < bulksize) and
                                            (counter == len(result)))):
                try:
                    cur2.executemany(
                        """UPDATE optiondata SET iv=%(iv)s, delta=%(delta)s, theta=%(theta)s, vega=%(vega)s WHERE id=%(rowid)s""",
                        bulkrows)
                    db.commit()
                    print("inserted: " + str(counter))
                    bulkrows = []
                    time.sleep(1)

                except Exception as e:
                    print("an exception occurred")
                    print(e)

            if (len(result) < bulksize) and (counter == len(result)):
                done = True
                print("Done precomputing")
                print()

    db.close()
Esempio n. 13
0
def precompute(underlying):

    print("precompute: " + str(underlying))
    print

    db = pgdb.connect(host="localhost",
                      user=settings.db_username,
                      password=settings.db_password,
                      database="optiondata")
    cur2 = db.cursor()

    query = "SELECT id, quote_date, underlying_bid_1545, underlying_ask_1545, bid_1545, ask_1545, expiration, strike, option_type FROM optiondata WHERE underlying_symbol = '" + underlying + "' AND iv IS NULL ORDER BY id asc"
    cur2.execute(query)
    result = cur2.fetchall()
    print(str(len(result)) + " items to precompute")

    for row in result:
        rowid = row[0]
        quote_date = row[1]
        underlying_bid_1545 = row[2]
        underlying_ask_1545 = row[3]
        bid_1545 = row[4]
        ask_1545 = row[5]
        expiration = row[6]
        strike = float(row[7])
        option_type = row[8].lower()
        current_quote = float((underlying_bid_1545 + underlying_ask_1545) / 2)
        midprice = float((bid_1545 + ask_1545) / 2)

        expiration_time = datetime.combine(expiration, time(16, 0))
        remaining_time_in_years = util.remaining_time(quote_date,
                                                      expiration_time)

        iv = 0.001
        delta = 0.001
        theta = 0.001
        vega = 0.001

        if remaining_time_in_years > 0:
            try:
                iv = implied_volatility.implied_volatility(
                    midprice, current_quote, int(strike),
                    remaining_time_in_years, util.interest, option_type)
            except:
                iv = 0.001

            delta = analytical.delta(option_type, current_quote, strike,
                                     remaining_time_in_years, util.interest,
                                     iv) * 100
            theta = analytical.theta(option_type, current_quote, strike,
                                     remaining_time_in_years, util.interest,
                                     iv) * 100
            vega = analytical.vega(option_type, current_quote, strike,
                                   remaining_time_in_years, util.interest,
                                   iv) * 100

        updateQuery = "UPDATE optiondata SET iv=%s, delta=%s, theta=%s, vega=%s WHERE id=%s" % (
            iv, delta, theta, vega, rowid)
        try:
            cur2.execute(updateQuery)
            db.commit()
        except:
            print("Except")
            print(rowid)
            print(current_quote)
            print(midprice)
            print(iv)
            print(delta)
            print(theta)
            print(vega)
            print(updateQuery)

    db.close()