Esempio n. 1
0
def test_elevation(site):
    x_i, y_i = site.initial_position.T
    npt.assert_array_less(
        np.abs(
            site.elevation(x_i=x_i, y_i=y_i) -
            [519.4, 567.7, 583.6, 600, 574.8, 559.9, 517.7, 474.5
             ]  # ref from wasp
        ),
        5)
Esempio n. 2
0
def test_speed_up_using_pickle():
    pkl_fn = ParqueFicticio_path + "ParqueFicticio.pkl"
    if os.path.exists(pkl_fn):
        os.remove(pkl_fn)
    start = time.time()
    site = WaspGridSiteBase.from_wasp_grd(ParqueFicticio_path, speedup_using_pickle=False)
    time_wo_pkl = time.time() - start
    site = WaspGridSiteBase.from_wasp_grd(ParqueFicticio_path, speedup_using_pickle=True)
    assert os.path.exists(pkl_fn)
    start = time.time()
    site = WaspGridSiteBase.from_wasp_grd(ParqueFicticio_path, speedup_using_pickle=True)
    time_w_pkl = time.time() - start
    npt.assert_array_less(time_w_pkl * 10, time_wo_pkl)
Esempio n. 3
0
def test_wasp_resources_grid_point(site):
    #     x = np.array([l.split() for l in """0.6010665    -10.02692    32.71442    -6.746912
    # 0.5007213    -4.591617    37.10247    -11.0699
    # 0.3104101    -1.821247    59.18301    -12.56743
    # 0.4674515    16.14293    44.84665    -9.693183
    # 0.8710347    5.291974    26.01634    -6.154611
    # 0.9998786    -2.777032    15.72486    1.029988
    # 0.9079611    -7.882853    16.33216    6.42329
    # 0.759553    -5.082487    17.23354    10.18187
    # 0.7221162    4.606324    17.96417    11.45838
    # 0.8088576    8.196074    16.16308    9.277925
    # 0.8800673    3.932325    14.82337    5.380589
    # 0.8726974    -3.199536    19.99724    -1.433086""".split("\n")], dtype=np.float)
    #     for x_ in x.T:
    #         print(list(x_))
    x = [262978]
    y = [6504814]
    npt.assert_almost_equal(site.elevation(x, y), 227.8, 1)

    # Data from WAsP:
    # - add turbine (262878,6504814,30)
    # - Turbine (right click) - reports - Turbine Site Report full precision
    wasp_A = [
        2.197305, 1.664085, 1.353185, 2.651781, 5.28438, 5.038289, 4.174325,
        4.604496, 5.043066, 6.108261, 6.082033, 3.659798
    ]
    wasp_k = [
        1.771484, 2.103516, 2.642578, 2.400391, 2.357422, 2.306641, 2.232422,
        2.357422, 2.400391, 2.177734, 1.845703, 1.513672
    ]
    wasp_f = [
        5.188083, 2.509297, 2.869334, 4.966141, 13.16969, 9.514355, 4.80275,
        6.038354, 9.828702, 14.44174, 16.60567, 10.0659
    ]
    wasp_spd = [
        0.6010665, 0.5007213, 0.3104101, 0.4674515, 0.8710347, 0.9998786,
        0.9079611, 0.759553, 0.7221162, 0.8088576, 0.8800673, 0.8726974
    ]
    wasp_trn = [
        -10.02692, -4.591617, -1.821247, 16.14293, 5.291974, -2.777032,
        -7.882853, -5.082487, 4.606324, 8.196074, 3.932325, -3.199536
    ]
    wasp_inc = [
        -6.746912, -11.0699, -12.56743, -9.693183, -6.154611, 1.029988,
        6.42329, 10.18187, 11.45838, 9.277925, 5.380589, -1.433086
    ]
    wasp_ti = [
        32.71442, 37.10247, 59.18301, 44.84665, 26.01634, 15.72486, 16.33216,
        17.23354, 17.96417, 16.16308, 14.82337, 19.99724
    ]
    rho = 1.179558

    wasp_u_mean = [
        1.955629, 1.473854, 1.202513, 2.350761, 4.683075, 4.463644, 3.697135,
        4.080554, 4.470596, 5.409509, 5.402648, 3.300305
    ]
    wasp_p_air = [
        9.615095, 3.434769, 1.556282, 12.45899, 99.90289, 88.03519, 51.41135,
        66.09097, 85.69466, 164.5592, 193.3779, 56.86945
    ]
    #     wasp_aep = np.array([3725293.0, 33722.71, 0.3093564, 3577990.0, 302099600.0, 188784100.0,
    #                          48915640.0, 84636210.0, 189009800.0, 549195100.0, 691258600.0, 120013000.0]) / 1000
    wasp_aep_no_density_correction = np.array([
        3937022.0, 36046.93, 0.33592, 3796496.0, 314595600.0, 196765700.0,
        51195440.0, 88451200.0, 197132700.0, 568584400.0, 712938400.0,
        124804600.0
    ]) / 1000
    #     wasp_aep_total = 2.181249024
    wasp_aep_no_density_correction_total = 2.26224
    wt_u = np.array([
        3.99, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
        22, 23, 24, 25
    ])
    wt_p = np.array([
        0, 55., 185., 369., 619., 941., 1326., 1741., 2133., 2436., 2617.,
        2702., 2734., 2744., 2747., 2748., 2748., 2750., 2750., 2750., 2750.,
        2750., 2750.
    ])
    wt_ct = np.array([
        0, 0.871, 0.853, 0.841, 0.841, 0.833, 0.797, 0.743, 0.635, 0.543,
        0.424, 0.324, 0.258, 0.21, 0.175, 0.147, 0.126, 0.109, 0.095, 0.083,
        0.074, 0.065, 0.059
    ])
    wt = OneTypeWindTurbines.from_tabular(name="NEG-Micon 2750/92 (2750 kW)",
                                          diameter=92,
                                          hub_height=70,
                                          ws=wt_u,
                                          ct=wt_ct,
                                          power=wt_p,
                                          power_unit='kw')

    A_lst, k_lst, f_lst, spd_lst, orog_trn_lst, flow_inc_lst, tke_lst = [
        site.interp_funcs[n]((x, y, 30, range(0, 360, 30)))
        for n in ['A', 'k', 'f', 'spd', 'orog_trn', 'flow_inc', 'tke']
    ]
    f_lst = f_lst * 360 / 12
    pdf_lst = [
        lambda x, A=A, k=k: k / A * (x / A)**(k - 1) * np.exp(-(x / A)**k) *
        (x[1] - x[0]) for A, k in zip(A_lst, k_lst)
    ]
    #     cdf_lst = [lambda x, A=A, k=k: 1 - np.exp(-(x / A) ** k) for A, k in zip(A_lst, k_lst)]
    dx = .1
    ws = np.arange(dx / 2, 35, dx)

    # compare to wasp data
    npt.assert_array_equal(A_lst, wasp_A)
    npt.assert_array_equal(k_lst, wasp_k)
    npt.assert_array_almost_equal(f_lst, np.array(wasp_f) / 100)
    npt.assert_array_almost_equal(spd_lst, wasp_spd)
    npt.assert_array_almost_equal(orog_trn_lst, wasp_trn)
    npt.assert_array_almost_equal(flow_inc_lst, wasp_inc)
    npt.assert_array_almost_equal(tke_lst, np.array(wasp_ti) / 100)

    # compare pdf, u_mean and aep to wasp
    lw = site.local_wind(x,
                         np.array(y) + 1e-6,
                         30,
                         wd=np.arange(0, 360, 30),
                         ws=ws)
    P = lw.P_ilk / lw.P_ilk.sum(2)[:, :,
                                   na]  # only wind speed probablity (not wdir)

    # pdf
    for l in range(12):
        npt.assert_array_almost_equal(
            np.interp(ws, lw.WS_ilk[0, l], np.cumsum(P[0, l])),
            np.cumsum(pdf_lst[l](ws)), 1)

    # u_mean
    npt.assert_almost_equal(
        [A * math.gamma(1 + 1 / k) for A, k in zip(A_lst, k_lst)], wasp_u_mean,
        5)
    npt.assert_almost_equal([(pdf(ws) * ws).sum() for pdf in pdf_lst],
                            wasp_u_mean, 5)
    npt.assert_almost_equal((P * lw.WS_ilk).sum((0, 2)), wasp_u_mean, 5)

    # air power
    p_air = [(pdf(ws) * 1 / 2 * rho * ws**3).sum() for pdf in pdf_lst]
    npt.assert_array_almost_equal(p_air, wasp_p_air, 3)
    npt.assert_array_almost_equal((P * 1 / 2 * rho * lw.WS_ilk**3).sum((0, 2)),
                                  wasp_p_air, 2)

    # AEP
    AEP_ilk = NOJ(site, wt)(x, y, h=30, wd=np.arange(0, 360, 30),
                            ws=ws).aep_ilk(with_wake_loss=False,
                                           normalize_probabilities=True)
    if 0:
        plt.plot(wasp_aep_no_density_correction / 1000, '.-', label='WAsP')
        plt.plot(AEP_ilk.sum((0, 2)) * 1e3, label='PyWake')
        plt.xlabel('Sector')
        plt.ylabel('AEP [MWh]')
        plt.legend()
        plt.show()
    npt.assert_array_less(
        np.abs(wasp_aep_no_density_correction - AEP_ilk.sum((0, 2)) * 1e6),
        300)
    npt.assert_almost_equal(AEP_ilk.sum(),
                            wasp_aep_no_density_correction_total, 3)