img = np.zeros([260, 346]) img[img_on > 0] = 255 img[img_off > 0] = 255 print('*************', img.shape) # image = cv2.cvtColor(img[None,:], cv2.COLOR_GRAY2RGB) # print('+++++++++++', image.shape) image = np.vstack((img, img, img)) print(image.shape) img = np.reshape(image, (3, 260, 346)) img = img.transpose(1, 2, 0) print(img.shape) cv2.imshow("image", img / float(clip_value * 2)) if cv2.waitKey(1) & 0xFF == ord('q'): break else: pass except KeyboardInterrupt: device.shutdown() break
num_pol_event, special_events, num_special_event, frames_ts, frames, imu_events, num_imu_event, ) = data if pol_events is not None: event_batch = np.concatenate( (event_batch, pol_events)) event_batch_size += num_pol_event except KeyboardInterrupt: dvs_device.shutdown() break event_batch = event_batch[1:, 0:4] event_tensor_pd = pd.DataFrame(data=event_batch, columns=["t", "x", "y", "pol"]) event_tensor_pd["t"] *= 1e-6 event_tensor_pd["x"].astype("int16") event_tensor_pd["y"].astype("int16") event_tensor_pd["pol"].astype("int16") last_timestamp = event_tensor_pd.values[-1, 0] with Timer("Building event tensor"): if args.compute_voxel_grid_on_cpu: