Esempio n. 1
0
def energy_prolongation_smoother(A,
                                 T,
                                 Atilde,
                                 B,
                                 Bf,
                                 Cpt_params,
                                 krylov='cg',
                                 maxiter=4,
                                 tol=1e-8,
                                 degree=1,
                                 weighting='local',
                                 prefilter={},
                                 postfilter={},
                                 cost=[0.0]):
    """Minimize the energy of the coarse basis functions (columns of T).  Both
    root-node and non-root-node style prolongation smoothing is available, see
    Cpt_params description below.

    Parameters
    ----------

    A : {csr_matrix, bsr_matrix}
        Sparse NxN matrix
    T : {bsr_matrix}
        Tentative prolongator, a NxM sparse matrix (M < N)
    Atilde : {csr_matrix}
        Strength of connection matrix
    B : {array}
        Near-nullspace modes for coarse grid.  Has shape (M,k) where
        k is the number of coarse candidate vectors.
    Bf : {array}
        Near-nullspace modes for fine grid.  Has shape (N,k) where
        k is the number of coarse candidate vectors.
    Cpt_params : {tuple}
        Tuple of the form (bool, dict).  If the Cpt_params[0] = False, then the
        standard SA prolongation smoothing is carried out.  If True, then
        root-node style prolongation smoothing is carried out.  The dict must
        be a dictionary of parameters containing, (1) P_I: P_I.T is the
        injection matrix for the Cpts, (2) I_F: an identity matrix for only the
        F-points (i.e. I, but with zero rows and columns for C-points) and I_C:
        the C-point analogue to I_F.  See Notes below for more information.
    krylov : {string}
        'cg' : for SPD systems.  Solve A T = 0 in a constraint space with CG
        'cgnr' : for nonsymmetric and/or indefinite systems.
                 Solve A T = 0 in a constraint space with CGNR
        'gmres' : for nonsymmetric and/or indefinite systems.
                 Solve A T = 0 in a constraint space with GMRES
    maxiter : integer
        Number of energy minimization steps to apply to the prolongator
    tol : {scalar}
        Minimization tolerance
    degree : {int}
        Generate sparsity pattern for P based on (Atilde^degree T)
    weighting : {string}
        'block', 'diagonal' or 'local' construction of the
            diagonal preconditioning
        'local': Uses a local row-wise weight based on the Gershgorin estimate.
            Avoids any potential under-damping due to inaccurate spectral
            radius estimates.
        'block': If A is a BSR matrix, use a block diagonal inverse of A
        'diagonal': Use inverse of the diagonal of A
    prefilter : {dictionary} : Default {}
        Filters elements by row in sparsity pattern for P to reduce operator and
        setup complexity. If None or empty dictionary, no dropping in P is done.
        If postfilter has key 'k', then the largest 'k' entries  are kept in each
        row.  If postfilter has key 'theta', all entries such that
            P[i,j] < kwargs['theta']*max(abs(P[i,:]))
        are dropped.  If postfilter['k'] and postfiler['theta'] are present, then
        they are used in conjunction, with the union of their patterns used.
    postfilter : {dictionary} : Default {}
        Filters elements by row in smoothed P to reduce operator complexity. 
        Only supported if using the rootnode_solver. If None or empty dictionary,
        no dropping in P is done. If postfilter has key 'k', then the largest 'k'
        entries  are kept in each row.  If postfilter has key 'theta', all entries
        such that
            P[i,j] < kwargs['theta']*max(abs(P[i,:]))
        are dropped.  If postfilter['k'] and postfiler['theta'] are present, then
        they are used in conjunction, with the union of their patterns used.

    Returns
    -------
    T : {bsr_matrix}
        Smoothed prolongator

    Notes
    -----
    Only 'diagonal' weighting is supported for the CGNR method, because
    we are working with A^* A and not A.

    When Cpt_params[0] == True, root-node style prolongation smoothing
    is used to minimize the energy of columns of T.  Essentially, an
    identity block is maintained in T, corresponding to injection from
    the coarse-grid to the fine-grid root-nodes.  See [2] for more details,
    and see util.utils.get_Cpt_params for the helper function to generate
    Cpt_params.

    If Cpt_params[0] == False, the energy of columns of T are still
    minimized, but without maintaining the identity block.

    Examples
    --------
    >>> from pyamg.aggregation import energy_prolongation_smoother
    >>> from pyamg.gallery import poisson
    >>> from scipy.sparse import coo_matrix
    >>> import numpy as np
    >>> data = np.ones((6,))
    >>> row = np.arange(0,6)
    >>> col = np.kron([0,1],np.ones((3,)))
    >>> T = coo_matrix((data,(row,col)),shape=(6,2)).tocsr()
    >>> print T.todense()
    [[ 1.  0.]
     [ 1.  0.]
     [ 1.  0.]
     [ 0.  1.]
     [ 0.  1.]
     [ 0.  1.]]
    >>> A = poisson((6,),format='csr')
    >>> B = np.ones((2,1),dtype=float)
    >>> P = energy_prolongation_smoother(A,T,A,B, None, (False,{}))
    >>> print P.todense()
    [[ 1.          0.        ]
     [ 1.          0.        ]
     [ 0.66666667  0.33333333]
     [ 0.33333333  0.66666667]
     [ 0.          1.        ]
     [ 0.          1.        ]]

    References
    ----------
    .. [1] Jan Mandel, Marian Brezina, and Petr Vanek
       "Energy Optimization of Algebraic Multigrid Bases"
       Computing 62, 205-228, 1999
       http://dx.doi.org/10.1007/s006070050022
    .. [2] Olson, L. and Schroder, J. and Tuminaro, R.,
       "A general interpolation strategy for algebraic
       multigrid using energy minimization", SIAM Journal
       on Scientific Computing (SISC), vol. 33, pp.
       966--991, 2011.
    """

    # Test Inputs
    if maxiter < 0:
        raise ValueError('maxiter must be > 0')
    if tol > 1:
        raise ValueError('tol must be <= 1')

    if sparse.isspmatrix_csr(A):
        A = A.tobsr(blocksize=(1, 1), copy=False)
    elif sparse.isspmatrix_bsr(A):
        pass
    else:
        raise TypeError("A must be csr_matrix or bsr_matrix")

    if sparse.isspmatrix_csr(T):
        T = T.tobsr(blocksize=(1, 1), copy=False)
    elif sparse.isspmatrix_bsr(T):
        pass
    else:
        raise TypeError("T must be csr_matrix or bsr_matrix")

    if T.blocksize[0] != A.blocksize[0]:
        raise ValueError("T row-blocksize should be the same as A blocksize")

    if B.shape[0] != T.shape[1]:
        raise ValueError("B is the candidates for the coarse grid. \
                            num_rows(b) = num_cols(T)")

    if min(T.nnz, A.nnz) == 0:
        return T

    if not sparse.isspmatrix_csr(Atilde):
        raise TypeError("Atilde must be csr_matrix")

    if ('theta' in prefilter) and (prefilter['theta'] == 0):
        prefilter.pop('theta', None)

    if ('theta' in postfilter) and (postfilter['theta'] == 0):
        postfilter.pop('theta', None)

    # Prepocess Atilde, the strength matrix
    if Atilde is None:
        Atilde = sparse.csr_matrix(
            (np.ones(len(A.indices)), A.indices.copy(), A.indptr.copy()),
            shape=(A.shape[0] / A.blocksize[0], A.shape[1] / A.blocksize[1]))

    # If Atilde has no nonzeros, then return T
    if min(T.nnz, A.nnz) == 0:
        return T

    # Expand allowed sparsity pattern for P through multiplication by Atilde
    if degree > 0:

        # Construct Sparsity_Pattern by multiplying with Atilde
        T.sort_indices()
        shape = (int(T.shape[0] / T.blocksize[0]),
                 int(T.shape[1] / T.blocksize[1]))
        Sparsity_Pattern = sparse.csr_matrix(
            (np.ones(T.indices.shape), T.indices, T.indptr), shape=shape)

        AtildeCopy = Atilde.copy()
        for i in range(degree):
            cost[0] += mat_mat_complexity(AtildeCopy,
                                          Sparsity_Pattern) / float(A.nnz)
            Sparsity_Pattern = AtildeCopy * Sparsity_Pattern

        # Optional filtering of sparsity pattern before smoothing
        #   - Complexity: two passes through T for theta-filter, a sort on
        #     each row for k-filter, adding matrices if both.
        if 'theta' in prefilter and 'k' in prefilter:
            temp_cost = [0.0]
            Sparsity_theta = filter_matrix_rows(Sparsity_Pattern,
                                                prefilter['theta'],
                                                cost=temp_cost)
            Sparsity_Pattern = truncate_rows(Sparsity_Pattern,
                                             prefilter['k'],
                                             cost=temp_cost)
            cost[0] += temp_cost[0] / float(A.nnz)
            # Union two sparsity patterns
            Sparsity_Pattern += Sparsity_theta
            cost[0] += Sparsity_Pattern.nnz / float(A.nnz)
        elif 'k' in prefilter:
            temp_cost = [0.0]
            Sparsity_Pattern = truncate_rows(Sparsity_Pattern,
                                             prefilter['k'],
                                             cost=temp_cost)
            cost[0] += temp_cost[0] / float(A.nnz)
        elif 'theta' in prefilter:
            temp_cost = [0.0]
            Sparsity_Pattern = filter_matrix_rows(Sparsity_Pattern,
                                                  prefilter['theta'],
                                                  cost=temp_cost)
            cost[0] += temp_cost[0] / float(A.nnz)
        elif len(prefilter) > 0:
            raise ValueError("Unrecognized prefilter option")

        # UnAmal returns a BSR matrix with 1's in the nonzero locations
        Sparsity_Pattern = UnAmal(Sparsity_Pattern, T.blocksize[0],
                                  T.blocksize[1])
        Sparsity_Pattern.sort_indices()

    else:
        # If degree is 0, just copy T for the sparsity pattern
        Sparsity_Pattern = T.copy()
        if 'theta' in prefilter and 'k' in prefilter:
            temp_cost = [0.0]
            Sparsity_theta = filter_matrix_rows(Sparsity_Pattern,
                                                prefilter['theta'],
                                                cost=temp_cost)
            Sparsity_Pattern = truncate_rows(Sparsity_Pattern,
                                             prefilter['k'],
                                             cost=temp_cost)
            cost[0] += temp_cost[0] / float(A.nnz)
            # Union two sparsity patterns
            Sparsity_Pattern += Sparsity_theta
            cost[0] += Sparsity_Pattern.nnz / float(A.nnz)
        elif 'k' in prefilter:
            temp_cost = [0.0]
            Sparsity_Pattern = truncate_rows(Sparsity_Pattern,
                                             prefilter['k'],
                                             cost=temp_cost)
            cost[0] += temp_cost[0] / float(A.nnz)
        elif 'theta' in prefilter:
            temp_cost = [0.0]
            Sparsity_Pattern = filter_matrix_rows(Sparsity_Pattern,
                                                  prefilter['theta'],
                                                  cost=temp_cost)
            cost[0] += temp_cost[0] / float(A.nnz)
        elif len(prefilter) > 0:
            raise ValueError("Unrecognized prefilter option")

        Sparsity_Pattern.data[:] = 1.0
        Sparsity_Pattern.sort_indices()

    # If using root nodes, enforce identity at C-points
    if Cpt_params[0]:
        Sparsity_Pattern = Cpt_params[1]['I_F'] * Sparsity_Pattern
        Sparsity_Pattern = Cpt_params[1]['P_I'] + Sparsity_Pattern
        cost[0] += Sparsity_Pattern.nnz / float(A.nnz)

    # Construct array of inv(Bi'Bi), where Bi is B restricted to row i's
    # sparsity pattern in Sparsity Pattern. This array is used multiple times
    # in Satisfy_Constraints(...).
    temp_cost = [0.0]
    BtBinv = compute_BtBinv(B, Sparsity_Pattern, cost=temp_cost)
    cost[0] += temp_cost[0] / float(A.nnz)

    # If using root nodes and B has more columns that A's blocksize, then
    # T must be updated so that T*B = Bfine.  Note, if this is a 'secondpass'
    # after dropping entries in P, then we must re-enforce the constraints
    if (Cpt_params[0] and
        (B.shape[1] > A.blocksize[0])) or ('secondpass' in postfilter):
        temp_cost = [0.0]
        T = filter_operator(T, Sparsity_Pattern, B, Bf, BtBinv, cost=temp_cost)
        cost[0] += temp_cost[0] / float(A.nnz)
        # Ensure identity at C-pts
        if Cpt_params[0]:
            T = Cpt_params[1]['I_F'] * T + Cpt_params[1]['P_I']

    # Iteratively minimize the energy of T subject to the constraints of
    # Sparsity_Pattern and maintaining T's effect on B, i.e. T*B =
    # (T+Update)*B, i.e. Update*B = 0
    if krylov == 'cg':
        T = cg_prolongation_smoothing(A, T, B, BtBinv, Sparsity_Pattern,
                                      maxiter, tol, weighting, Cpt_params,
                                      cost)
    elif krylov == 'cgnr':
        T = cgnr_prolongation_smoothing(A, T, B, BtBinv, Sparsity_Pattern,
                                        maxiter, tol, weighting, Cpt_params,
                                        cost)
    elif krylov == 'gmres':
        T = gmres_prolongation_smoothing(A, T, B, BtBinv, Sparsity_Pattern,
                                         maxiter, tol, weighting, Cpt_params,
                                         cost)

    T.eliminate_zeros()

    # Filter entries in P, only in the rootnode case, i.e., Cpt_params[0] == True
    if (len(postfilter) == 0) or ('secondpass'
                                  in postfilter) or (Cpt_params[0] is False):
        return T
    else:
        if 'theta' in postfilter and 'k' in postfilter:
            temp_cost = [0.0]
            T_theta = filter_matrix_rows(T,
                                         postfilter['theta'],
                                         cost=temp_cost)
            T_k = truncate_rows(T, postfilter['k'], cost=temp_cost)
            cost[0] += temp_cost[0] / float(A.nnz)

            # Union two sparsity patterns
            T_theta.data[:] = 1.0
            T_k.data[:] = 1.0
            T_filter = T_theta + T_k
            T_filter.data[:] = 1.0
            T_filter = T.multiply(T_filter)

        elif 'k' in postfilter:
            temp_cost = [0.0]
            T_filter = truncate_rows(T, postfilter['k'], cost=temp_cost)
            cost[0] += temp_cost[0] / float(A.nnz)
        elif 'theta' in postfilter:
            temp_cost = [0.0]
            T_filter = filter_matrix_rows(T,
                                          postfilter['theta'],
                                          cost=temp_cost)
            cost[0] += temp_cost[0] / float(A.nnz)
        else:
            raise ValueError("Unrecognized postfilter option")

        # Re-smooth T_filter and re-fit the modes B into the span.
        # Note, we set 'secondpass', because this is the second
        # filtering pass
        T = energy_prolongation_smoother(A,
                                         T_filter,
                                         Atilde,
                                         B,
                                         Bf,
                                         Cpt_params,
                                         krylov=krylov,
                                         maxiter=1,
                                         tol=1e-8,
                                         degree=0,
                                         weighting=weighting,
                                         prefilter={},
                                         postfilter={'secondpass': True},
                                         cost=cost)

    return T
Esempio n. 2
0
def energy_prolongation_smoother(A, T, Atilde, B, Bf, Cpt_params,
                                 krylov='cg', maxiter=4, tol=1e-8,
                                 degree=1, weighting='local',
                                 prefilter={}, postfilter={}):
    """Minimize the energy of the coarse basis functions (columns of T).  Both
    root-node and non-root-node style prolongation smoothing is available, see
    Cpt_params description below.

    Parameters
    ----------

    A : {csr_matrix, bsr_matrix}
        Sparse NxN matrix
    T : {bsr_matrix}
        Tentative prolongator, a NxM sparse matrix (M < N)
    Atilde : {csr_matrix}
        Strength of connection matrix
    B : {array}
        Near-nullspace modes for coarse grid.  Has shape (M,k) where
        k is the number of coarse candidate vectors.
    Bf : {array}
        Near-nullspace modes for fine grid.  Has shape (N,k) where
        k is the number of coarse candidate vectors.
    Cpt_params : {tuple}
        Tuple of the form (bool, dict).  If the Cpt_params[0] = False, then the
        standard SA prolongation smoothing is carried out.  If True, then
        root-node style prolongation smoothing is carried out.  The dict must
        be a dictionary of parameters containing, (1) P_I: P_I.T is the
        injection matrix for the Cpts, (2) I_F: an identity matrix for only the
        F-points (i.e. I, but with zero rows and columns for C-points) and I_C:
        the C-point analogue to I_F.  See Notes below for more information.
    krylov : {string}
        'cg' : for SPD systems.  Solve A T = 0 in a constraint space with CG
        'cgnr' : for nonsymmetric and/or indefinite systems.
                 Solve A T = 0 in a constraint space with CGNR
        'gmres' : for nonsymmetric and/or indefinite systems.
                 Solve A T = 0 in a constraint space with GMRES
    maxiter : integer
        Number of energy minimization steps to apply to the prolongator
    tol : {scalar}
        Minimization tolerance
    degree : {int}
        Generate sparsity pattern for P based on (Atilde^degree T)
    weighting : {string}
        'block', 'diagonal' or 'local' construction of the
            diagonal preconditioning
        'local': Uses a local row-wise weight based on the Gershgorin estimate.
            Avoids any potential under-damping due to inaccurate spectral
            radius estimates.
        'block': If A is a BSR matrix, use a block diagonal inverse of A
        'diagonal': Use inverse of the diagonal of A
    prefilter : {dictionary} : Default {}
        Filters elements by row in sparsity pattern for P to reduce operator and
        setup complexity. If None or empty dictionary, no dropping in P is done.
        If postfilter has key 'k', then the largest 'k' entries  are kept in each
        row.  If postfilter has key 'theta', all entries such that
            P[i,j] < kwargs['theta']*max(abs(P[i,:]))
        are dropped.  If postfilter['k'] and postfiler['theta'] are present, then
        they are used in conjunction, with the union of their patterns used.
    postfilter : {dictionary} : Default {}
        Filters elements by row in smoothed P to reduce operator complexity. 
        Only supported if using the rootnode_solver. If None or empty dictionary,
        no dropping in P is done. If postfilter has key 'k', then the largest 'k'
        entries  are kept in each row.  If postfilter has key 'theta', all entries
        such that
            P[i,j] < kwargs['theta']*max(abs(P[i,:]))
        are dropped.  If postfilter['k'] and postfiler['theta'] are present, then
        they are used in conjunction, with the union of their patterns used.

    Returns
    -------
    T : {bsr_matrix}
        Smoothed prolongator

    Notes
    -----
    Only 'diagonal' weighting is supported for the CGNR method, because
    we are working with A^* A and not A.

    When Cpt_params[0] == True, root-node style prolongation smoothing
    is used to minimize the energy of columns of T.  Essentially, an
    identity block is maintained in T, corresponding to injection from
    the coarse-grid to the fine-grid root-nodes.  See [2] for more details,
    and see util.utils.get_Cpt_params for the helper function to generate
    Cpt_params.

    If Cpt_params[0] == False, the energy of columns of T are still
    minimized, but without maintaining the identity block.

    Examples
    --------
    >>> from pyamg.aggregation import energy_prolongation_smoother
    >>> from pyamg.gallery import poisson
    >>> from scipy.sparse import coo_matrix
    >>> import numpy as np
    >>> data = np.ones((6,))
    >>> row = np.arange(0,6)
    >>> col = np.kron([0,1],np.ones((3,)))
    >>> T = coo_matrix((data,(row,col)),shape=(6,2)).tocsr()
    >>> print T.todense()
    [[ 1.  0.]
     [ 1.  0.]
     [ 1.  0.]
     [ 0.  1.]
     [ 0.  1.]
     [ 0.  1.]]
    >>> A = poisson((6,),format='csr')
    >>> B = np.ones((2,1),dtype=float)
    >>> P = energy_prolongation_smoother(A,T,A,B, None, (False,{}))
    >>> print P.todense()
    [[ 1.          0.        ]
     [ 1.          0.        ]
     [ 0.66666667  0.33333333]
     [ 0.33333333  0.66666667]
     [ 0.          1.        ]
     [ 0.          1.        ]]

    References
    ----------
    .. [1] Jan Mandel, Marian Brezina, and Petr Vanek
       "Energy Optimization of Algebraic Multigrid Bases"
       Computing 62, 205-228, 1999
       http://dx.doi.org/10.1007/s006070050022
    .. [2] Olson, L. and Schroder, J. and Tuminaro, R.,
       "A general interpolation strategy for algebraic
       multigrid using energy minimization", SIAM Journal
       on Scientific Computing (SISC), vol. 33, pp.
       966--991, 2011.
    """

    # Test Inputs
    if maxiter < 0:
        raise ValueError('maxiter must be > 0')
    if tol > 1:
        raise ValueError('tol must be <= 1')

    if sparse.isspmatrix_csr(A):
        A = A.tobsr(blocksize=(1, 1), copy=False)
    elif sparse.isspmatrix_bsr(A):
        pass
    else:
        raise TypeError("A must be csr_matrix or bsr_matrix")

    if sparse.isspmatrix_csr(T):
        T = T.tobsr(blocksize=(1, 1), copy=False)
    elif sparse.isspmatrix_bsr(T):
        pass
    else:
        raise TypeError("T must be csr_matrix or bsr_matrix")

    if T.blocksize[0] != A.blocksize[0]:
        raise ValueError("T row-blocksize should be the same as A blocksize")

    if B.shape[0] != T.shape[1]:
        raise ValueError("B is the candidates for the coarse grid. \
                            num_rows(b) = num_cols(T)")

    if min(T.nnz, A.nnz) == 0:
        return T
        
    if not sparse.isspmatrix_csr(Atilde):
        raise TypeError("Atilde must be csr_matrix")

    if ('theta' in prefilter) and (prefilter['theta'] == 0):
        prefilter.pop('theta', None)

    if ('theta' in postfilter) and (postfilter['theta'] == 0):
        postfilter.pop('theta', None)

    # Prepocess Atilde, the strength matrix
    if Atilde is None:
        Atilde = sparse.csr_matrix((np.ones(len(A.indices)),
                                    A.indices.copy(), A.indptr.copy()),
                                    shape=(A.shape[0]/A.blocksize[0],
                                           A.shape[1]/A.blocksize[1]))
    
    # If Atilde has no nonzeros, then return T
    if min(T.nnz, A.nnz) == 0:
        return T

    # Expand allowed sparsity pattern for P through multiplication by Atilde
    if degree > 0:

        # Construct Sparsity_Pattern by multiplying with Atilde
        T.sort_indices()
        shape = (int(T.shape[0]/T.blocksize[0]), int(T.shape[1]/T.blocksize[1]))
        Sparsity_Pattern = sparse.csr_matrix((np.ones(T.indices.shape),
                                              T.indices, T.indptr),
                                              shape=shape)
        
        AtildeCopy = Atilde.copy()
        AtildeCopy.data[:] = 1.0
        for i in range(degree):
            Sparsity_Pattern = AtildeCopy*Sparsity_Pattern

        # Optional filtering of sparsity pattern before smoothing
        if 'theta' in prefilter and 'k' in prefilter:
            Sparsity_theta = filter_matrix_rows(Sparsity_Pattern, prefilter['theta'])
            Sparsity_Pattern = truncate_rows(Sparsity_Pattern, prefilter['k'])
            # Union two sparsity patterns
            Sparsity_Pattern += Sparsity_theta
        elif 'k' in prefilter:
            Sparsity_Pattern = truncate_rows(Sparsity_Pattern, prefilter['k'])
        elif 'theta' in prefilter:
            Sparsity_Pattern = filter_matrix_rows(Sparsity_Pattern, prefilter['theta'])
        elif len(prefilter) > 0:
            raise ValueError("Unrecognized prefilter option")

        # UnAmal returns a BSR matrix with 1's in the nonzero locations
        Sparsity_Pattern = UnAmal(Sparsity_Pattern,
                                  T.blocksize[0], T.blocksize[1])
        Sparsity_Pattern.sort_indices()

    else:
        # If degree is 0, just copy T for the sparsity pattern
        Sparsity_Pattern = T.copy()
        if 'theta' in prefilter and 'k' in prefilter:
            Sparsity_theta = filter_matrix_rows(Sparsity_Pattern, prefilter['theta'])
            Sparsity_Pattern = truncate_rows(Sparsity_Pattern, prefilter['k'])
            # Union two sparsity patterns
            Sparsity_Pattern += Sparsity_theta
        elif 'k' in prefilter:
            Sparsity_Pattern = truncate_rows(Sparsity_Pattern, prefilter['k'])
        elif 'theta' in prefilter:
            Sparsity_Pattern = filter_matrix_rows(Sparsity_Pattern, prefilter['theta'])
        elif len(prefilter) > 0:
            raise ValueError("Unrecognized prefilter option")

        Sparsity_Pattern.data[:] = 1.0
        Sparsity_Pattern.sort_indices()

    # If using root nodes, enforce identity at C-points
    if Cpt_params[0]:
        Sparsity_Pattern = Cpt_params[1]['I_F'] * Sparsity_Pattern
        Sparsity_Pattern = Cpt_params[1]['P_I'] + Sparsity_Pattern

    # Construct array of inv(Bi'Bi), where Bi is B restricted to row i's
    # sparsity pattern in Sparsity Pattern. This array is used multiple times
    # in Satisfy_Constraints(...).
    BtBinv = compute_BtBinv(B, Sparsity_Pattern)

    # If using root nodes and B has more columns that A's blocksize, then
    # T must be updated so that T*B = Bfine.  Note, if this is a 'secondpass'
    # after dropping entries in P, then we must re-enforce the constraints
    if (Cpt_params[0] and (B.shape[1] > A.blocksize[0])) or ('secondpass' in postfilter):
        T = filter_operator(T, Sparsity_Pattern, B, Bf, BtBinv)
        # Ensure identity at C-pts
        if Cpt_params[0]:
            T = Cpt_params[1]['I_F']*T + Cpt_params[1]['P_I']

    # Iteratively minimize the energy of T subject to the constraints of
    # Sparsity_Pattern and maintaining T's effect on B, i.e. T*B =
    # (T+Update)*B, i.e. Update*B = 0
    if krylov == 'cg':
        T = cg_prolongation_smoothing(A, T, B, BtBinv, Sparsity_Pattern,
                                      maxiter, tol, weighting, Cpt_params)
    elif krylov == 'cgnr':
        T = cgnr_prolongation_smoothing(A, T, B, BtBinv, Sparsity_Pattern,
                                        maxiter, tol, weighting, Cpt_params)
    elif krylov == 'gmres':
        T = gmres_prolongation_smoothing(A, T, B, BtBinv, Sparsity_Pattern,
                                         maxiter, tol, weighting, Cpt_params)

    T.eliminate_zeros()

    # Filter entries in P, only in the rootnode case, i.e., Cpt_params[0] == True
    if (len(postfilter) == 0) or ('secondpass' in postfilter) or (Cpt_params[0] is False):
        return T
    else:
        if 'theta' in postfilter and 'k' in postfilter:
            T_theta = filter_matrix_rows(T, postfilter['theta'])
            T_k = truncate_rows(T, postfilter['k'])

            # Union two sparsity patterns
            T_theta.data[:] = 1.0
            T_k.data[:] = 1.0
            T_filter = T_theta + T_k
            T_filter.data[:] = 1.0
            T_filter = T.multiply(T_filter)

        elif 'k' in postfilter:
            T_filter = truncate_rows(T, postfilter['k'])
        elif 'theta' in postfilter:
            T_filter = filter_matrix_rows(T, postfilter['theta'])
        else:
            raise ValueError("Unrecognized postfilter option")

        # Re-smooth T_filter and re-fit the modes B into the span. 
        # Note, we set 'secondpass', because this is the second 
        # filtering pass
        T = energy_prolongation_smoother(A, T_filter,
                                         Atilde, B, Bf, Cpt_params,
                                         krylov=krylov, maxiter=1,
                                         tol=1e-8, degree=0,
                                         weighting=weighting,
                                         prefilter={},
                                         postfilter={'secondpass' : True} )

    return T