Esempio n. 1
0
    def test_quadratic_misfit_model(self):
        num_dims = 10
        rank = 3
        num_qoi = 3
        obs = np.random.normal(0., 1., (num_qoi))
        model = QuadraticMisfitModel(num_dims, rank, num_qoi, obs)

        sample = np.random.normal(0., 1., (num_dims))
        helper_gradient(model.value, model.gradient, sample)
Esempio n. 2
0
    def test_neg_log_posterior(self):
        num_dims = 10
        rank = 3
        num_qoi = 3
        obs = np.random.normal(0., 1., (num_qoi))
        noise_covariance = np.eye(num_qoi)*0.1
        misfit_model = QuadraticMisfitModel(
            num_dims, rank, num_qoi, obs, noise_covariance=noise_covariance)

        prior_mean = np.ones((num_dims), float)
        prior_covariance = np.eye(num_dims)*0.25
        prior_density = NormalDensity(prior_mean, covariance=prior_covariance)
        objective = LogUnormalizedPosterior(
            misfit_model, misfit_model.gradient_set, prior_density.pdf,
            prior_density.log_pdf, prior_density.log_pdf_gradient)

        sample = np.random.normal(0., 1., (num_dims))
        helper_gradient(misfit_model.value, misfit_model.gradient, sample)