Esempio n. 1
0
    def optimize(self,
                 max_cycles=350,
                 gamma=0.0,
                 restart=False,
                 convergence='normal'):
        """
        :return:This object will return the optimization status. It will
        optimize a structure.
        """
        # TODO: Add a return 'CycleExceeded'

        logfile = "trial_{}.log".format(self.job_name)
        with open(logfile, 'w') as fopt:
            out = subp.Popen(["mopac", self.inp_file],
                             stdout=fopt,
                             stderr=fopt)
        out.communicate()
        out.poll()
        exit_status = out.returncode
        if exit_status == 0:
            if os.path.exists(self.arc_file):
                self.energy = self.get_energy()
                self.optimized_coordinates = self.get_coords()
                interface.write_xyz(self.atoms_list,
                                    self.optimized_coordinates,
                                    self.result_xyz_file,
                                    self.job_name,
                                    energy=self.energy)
                return True
            else:
                print("Error: File ", self.arc_file, "was not found.")
                print("Check for partial optimization.")
                print("Location: {}".format(os.getcwd()))
                return False
Esempio n. 2
0
    def optimize(self,
                 max_cycles=350,
                 gamma=0.0,
                 restart=False,
                 convergence='normal'):
        """
        :return:This object will return the optimization status. It will
        optimize a structure.
        """
        # TODO: Add a return 'CycleExceeded'

        with open(self.out_file, 'w') as fopt:
            out = subp.Popen(["psi4", self.inp_file], stdout=fopt, stderr=fopt)
        out.communicate()
        out.poll()
        exit_status = out.returncode
        if exit_status == 0:
            f = open(self.out_file, "r")
            if "  **** Optimization is complete!" in f.read():
                print("Optimized")
                self.energy = self.get_energy()
                self.optimized_coordinates = self.get_coordinates()
                write_xyz(self.atoms_list,
                          self.optimized_coordinates,
                          self.result_xyz_file,
                          energy=self.energy)
                f.close()
                return True
            else:
                print("Error: OPTIMIZATION PROBABLY FAILED. "
                      "CHECK THE .out FILE FOR PARTIAL OPTIMIZTION ")
                print("Check for partial optimization.")
                print("Location: {}".format(os.getcwd()))
                return False
Esempio n. 3
0
    def run_turbomole_jobex(self, max_cycles=350):
        """
        return one of the following:
            True: converged
            SCFFailed
            GradFailed
            UpdateFailed
            CycleExceeded
            False: unknown error or jebex excution error
        :rtype: string or boolean
        """
        with open('jobex.out', 'w') as fj:
            try:
                subp.check_call(['jobex', '-ri', '-c', str(max_cycles)], stdout=fj,
                                stderr=fj)
            except subp.CalledProcessError as e:
                turbomole_logger.error('jobex failed, check %s/jobex.out'
                                       % os.getcwd())
                return False

        if os.path.isfile('GEO_OPT_FAILED'):
            message = open('GEO_OPT_FAILED').read()
            if 'ERROR: Module' in message:
                turbomole_logger.error('Error in module!\n chcek %s/GEO_OPT_FAILED' % os.getcwd())
                return False
            elif 'ERROR in statpt step,' in message:
                turbomole_logger.error('Statpt failed!\n chcek %s/GEO_OPT_FAILED' % os.getcwd())
                return 'UpdateFailed'
            elif 'ERROR in relax step,' in message:
                turbomole_logger.error('Relax failed!\n chcek %s/GEO_OPT_FAILED' % os.getcwd())
                return 'UpdateFailed'
            elif 'ERROR: your energy calculation did not converge !!,' in message:
                turbomole_logger.error('SCF failed!\n chcek %s/GEO_OPT_FAILED' % os.getcwd())
                return 'SCFFailed'
            elif 'ERROR in dscf step' in message:
                turbomole_logger.error('SCF failed!\n chcek %s/GEO_OPT_FAILED' % os.getcwd())
                return 'SCFFailed'
            elif 'ERROR in gradient step' in message:
                turbomole_logger.error('Gradient failed!\n chcek %s/GEO_OPT_FAILED' % os.getcwd())
                return 'GradientFailed'
            elif 'OPTIMIZATION DID NOT CONVERGE' in message:
                turbomole_logger.error('Geometry did not converge in %d cycles.\ncheck %s' % (max_cycles, os.getcwd()))
                self.energy = get_energy()
                self.optimized_coordinates = bohr2angstrom(get_coords())
                return 'CycleExceeded'
            else:
                turbomole_logger.error('Unknown Error!\n chcek the files in %s' % os.getcwd())
                return False

        elif os.path.isfile('GEO_OPT_CONVERGED'):

            turbomole_logger.debug('jobex done')
            self.energy = get_energy()
            self.optimized_coordinates = bohr2angstrom(get_coords())
            interface.write_xyz(self.atoms_list, self.optimized_coordinates,
                                self.result_xyz_file,
                                self.job_name,
                                energy=self.energy)
            return True
Esempio n. 4
0
    def optimize(self, options):
        """
        :return:This object will return the optimization status. It will
        optimize a structure.
        """
        # TODO: Add a return 'CycleExceeded'
        logfile = "trial_{}.out".format(self.job_name)

        max_opt_cycles = options['opt_cycles']
        gamma = options['gamma']
        opt_keywords = f"maxcycles={max_opt_cycles}"
        convergence = options['opt_threshold']
        if convergence != 'normal':
            opt_keywords += f", {convergence}"
        self.keyword += f" opt=({opt_keywords})"
        self.prepare_input()
        with open(self.out_file, 'w') as fopt:
            out = subp.Popen(["g16", self.inp_file], stdout=fopt, stderr=fopt)
        out.communicate()
        out.poll()
        exit_status = out.returncode
        if exit_status == 0:
            file_pointer = open(self.out_file, "r")
            this_line = file_pointer.readlines()
            check_1 = 0
            check_2 = 0

            for j in this_line:
                if "Optimization completed" in j:
                    check_1 = 1
                if "SCF Done" in j:
                    check_2 = 1

            if ("Normal termination"
                    in this_line[-1]) and check_1 == 1 and check_2 == 1:
                self.energy = self.get_energy()
                self.optimized_coordinates = self.get_coords()
                interface.write_xyz(self.atoms_list,
                                    self.optimized_coordinates,
                                    self.result_xyz_file,
                                    self.job_name,
                                    energy=self.energy)
                file_pointer.close()
                return True
            else:
                print("Error: OPTIMIZATION PROBABLY FAILED.")
                print("Location: {}".format(os.getcwd()))
                return False
Esempio n. 5
0
    def optimize(self, options):
        max_cycles = options['opt_cycles']
        gamma = options['gamma']
        convergence = options['opt_threshold']

        pyar.interface.turbomole.make_coord(self.atoms_list, self.start_coords, self.coord_file)
        pyar.interface.turbomole.prepare_control()

        for cycle in range(max_cycles):
            xtb_turbo_logger.debug("Optimization Cycle {}".format(cycle))
            # Calculate energy and gradient
            status, message, energy, gradients = self.calc_engrad
            if status is False:
                xtb_turbo_logger.critical('Energy/Gradient evaluation failed')
                return 'SCFFailed'

            # Calculate afir gradient if gamma is greater than zero
            afir_energy, afir_gradient = restraints.isotropic(self.atoms_in_fragments, self.atoms_list,
                                                              pyar.interface.turbomole.get_coords(), gamma)
            pyar.interface.turbomole.rewrite_turbomole_energy_and_gradient_files(self.number_of_atoms, afir_energy,
                                                                                 afir_gradient)

            # Update coordinates and check convergence.
            status = pyar.interface.turbomole.update_coord()
            if status is False:
                xtb_turbo_logger.critical('Coordinate update failed in cycle %d' % cycle)
                xtb_turbo_logger.critical('Check the job in %s' % os.getcwd())
                return 'UpdateFailed'

            convergence_status = pyar.interface.turbomole.check_geometry_convergence()
            if convergence_status is True:
                xtb_turbo_logger.info('converged at {}'.format(cycle))
                self.energy = pyar.interface.turbomole.get_energy()
                self.optimized_coordinates = bohr2angstrom(pyar.interface.turbomole.get_coords())
                interface.write_xyz(self.atoms_list, self.optimized_coordinates,
                                    self.result_xyz_file,
                                    self.job_name,
                                    energy=self.energy)
                return True

            with open('energy.dat', 'a') as fe:
                fe.writelines("{:3d} {:15.8f} {:15.8f}\n".format(cycle, energy, energy + afir_energy))
        else:
            xtb_turbo_logger.info("cycle exceeded")
            status = 'cycle_exceeded'
            self.energy = pyar.interface.turbomole.get_energy()
            self.optimized_coordinates = bohr2angstrom(pyar.interface.turbomole.get_coords())
            return status
Esempio n. 6
0
    def optimize(self,
                 max_cycles=350,
                 gamma=None,
                 restart=False,
                 convergence='normal'):
        """
        :returns: True,
                  'SCFFailed',
                  'GradFailed',
                  'UpdateFailed',
                  'CycleExceeded',
                  False
        """
        if gamma is not None:
            xtb_logger.error('not implemented in this module. Use xtb_turbo')

        with open('xtb.out', 'w') as output_file_pointer:
            try:
                out = subp.check_call(self.cmd.split(),
                                      stdout=output_file_pointer,
                                      stderr=output_file_pointer)
            except Exception as e:
                xtb_logger.info('    Optimization failed')
                xtb_logger.error(f"      {e}")
                return False

        if os.path.isfile('.xtboptok'):

            write_xyz(self.atoms_list,
                      self.optimized_coordinates,
                      self.result_xyz_file,
                      job_name=self.job_name,
                      energy=self.energy)
            os.rename('xtbopt.log', self.trajectory_xyz_file)
            os.remove('.xtboptok')
            return True
        elif os.path.isfile('.sccnotconverged') or os.path.isfile(
                'NOT_CONVERGED'):
            xtb_logger.info(
                '      SCF Convergence failure in {} run in {}'.format(
                    self.start_xyz_file, os.getcwd()))
            return 'SCFFailed'
        else:
            xtb_logger.info(
                '      Something went wrong with {} run in {}'.format(
                    self.start_xyz_file, os.getcwd()))
            return False
Esempio n. 7
0
    def optimize(self, options):
        """
        :return:This object will return the optimization status. It will
        optimize a structure.
        """
        # TODO: Add a return 'CycleExceeded'

        max_cycles = options['opt_cycles']
        gamma = options['gamma']
        convergence = options['opt_threshold']

        self.keyword = self.keyword + '!Opt'
        self.prepare_input()

        with open(self.out_file, 'w') as fopt:
            out = subp.Popen([which("orca"), self.inp_file],
                             stdout=fopt,
                             stderr=fopt)
        out.communicate()
        out.poll()
        exit_status = out.returncode
        if exit_status == 0:
            f = open(self.out_file, "r")
            line = f.readlines()
            if "****ORCA TERMINATED NORMALLY****" in line[-2]:
                self.energy = self.get_energy()
                self.optimized_coordinates = np.loadtxt(self.inp_file[:-4] +
                                                        ".xyz",
                                                        dtype=float,
                                                        skiprows=2,
                                                        usecols=(1, 2, 3))
                write_xyz(self.atoms_list,
                          self.optimized_coordinates,
                          self.result_xyz_file,
                          energy=self.energy)
                f.close()
                return True
            else:
                print("Error: OPTIMIZATION PROBABLY FAILED. "
                      "CHECK THE .out FILE FOR PARTIAL OPTIMIZTION ")
                print("Check for partial optimization.")
                print("Location: {}".format(os.getcwd()))
                return False
Esempio n. 8
0
    def optimize(self, options):
        """This is the python implementation  of jobex of turbomole

        :returns: Union(True,
                  'SCFFailed',
                  'GradFailed',
                  'UpdateFailed',
                  'CycleExceeded',
                  False)

        """
        max_cycles = options['opt_cycles']
        gamma = options['gamma']
        convergence = options['opt_threshold']

        if convergence == 'loose':
            scf_conv = 6
        elif convergence == 'tight':
            scf_conv = 8
        else:
            scf_conv = 7
        basis_set = self.basis
        functional = 'bp'
        if self.method.lower() == 'bp86':
            functional = 'bp'
        if self.method.lower() == 'b3lyp':
            functional = 'b3-lyp'

        make_coord(self.atoms_list, self.start_coords)
        define_status = prepare_control(scf_conv=scf_conv,
                                        charge=self.charge,
                                        multiplicity=self.multiplicity,
                                        basis=basis_set,
                                        func=functional)
        if define_status is False:
            turbomole_logger.debug(
                'Initial Define failed, converting to cartesian coordinate')
            remove('control')
            define_status = prepare_control(scf_conv=scf_conv,
                                            coordinates='cartesian',
                                            charge=self.charge,
                                            multiplicity=self.multiplicity)
        if define_status is False:
            turbomole_logger.debug('Initial Define failed again. Quit')
            return 'UpdateFailed'

        if gamma is None:
            return self.run_turbomole_jobex(max_cycles=max_cycles)

        # Test for Turbomole input
        if not os.path.isfile('control'):
            turbomole_logger.critical("Turbomole control file should exist")
            return False

        with open('not.converged', 'w') as fp:
            fp.write('$convcrit\n')
            fp.write('   energy              6\n')
            fp.write('   cartesian gradient  3\n')
            fp.write('   basis set gradient  3\n')
            fp.write('   cycles              1\n')
            fp.write('$convergence not reached\n')
            fp.write('$end\n')

        remove('statistics')
        remove('dscf_problem')

        turbomole_logger.info("Turbomole Optimization started\n")
        turbomole_logger.info("  at  %s\n" % datetime.datetime.now())
        turbomole_logger.info("  on machine %s\n" % socket.gethostname())
        turbomole_logger.info("  by user %s\n" % os.getlogin())
        turbomole_logger.info("  in directory %s\n" % os.getcwd())

        initial_status, initial_energy = calc_energy()
        if initial_status is False:
            turbomole_logger.warning('Initial energy evaluation failed.')
            return 'SCFFailed'

        turbomole_logger.debug('First step: %s, %f' %
                               (initial_status, initial_energy))

        for cycle in range(max_cycles):
            # Calculate Gradients
            gradient_status = calc_gradients()
            if gradient_status is False:
                turbomole_logger.error(
                    'Gradient evaluation failed in cycle %d' % cycle)
                return 'GradFailed'

            for line in open('gradient').readlines():
                if 'cycle' in line:
                    turbomole_logger.debug(line.strip())

            # Calculate afir gradient if gamma is greater than zero
            # if gamma > 0.0:
            afir_energy, afir_gradients = restraints.isotropic(
                self.atoms_in_fragments, self.atoms_list, get_coords(), gamma)
            rewrite_turbomole_energy_and_gradient_files(
                self.number_of_atoms, afir_energy, afir_gradients)
            turbomole_logger.debug(f'restraint energy = {afir_energy:f}')

            # Update coordinates and check convergence.
            update_status = update_coord()
            if update_status is False:
                turbomole_logger.critical(
                    'Coordinate update failed in cycle %d' % cycle)
                turbomole_logger.critical('Check the job in %s' % os.getcwd())
                return 'UpdateFailed'

            convergence_status = check_geometry_convergence()
            if convergence_status is True:
                turbomole_logger.info('converged at %d' % cycle)
                self.energy = get_energy()
                self.optimized_coordinates = bohr2angstrom(get_coords())
                interface.write_xyz(self.atoms_list,
                                    self.optimized_coordinates,
                                    self.result_xyz_file,
                                    self.job_name,
                                    energy=self.energy)
                return True

            # Calculate energy
            scf_status, energy = calc_energy()
            if scf_status is False:
                turbomole_logger.critical(
                    'Energy evaluation failed in cycle %d' % cycle)
                return 'SCFFailed'

            with open('energy.dat', 'a') as fe:
                # if gamma > 0.0:
                fe.writelines("{:3d} {:15.8f} {:15.8f}\n".format(
                    cycle, energy, energy + afir_energy))
                # else:
                #     fe.writelines("{:3d} {:15.8f}\n".format(cycle, energy))
        else:
            turbomole_logger.info(
                "OPTIMIZATION DID NOT CONVERGE WITHIN "
                "%d CYCLES\n Restarting it after checking "
                "the gradient norms\n might be a good idea..."
                " (grep cycle gradient)" % max_cycles)

            self.energy = get_energy()
            self.optimized_coordinates = bohr2angstrom(get_coords())
            return 'CycleExceeded'