def img_data(file_name): """Load common image files into a Glue data object""" result = Data() data = img_loader(file_name) data = np.flipud(data) shp = data.shape comps = [] labels = [] # split 3 color images into each color plane if len(shp) == 3 and shp[2] in [3, 4]: comps.extend([data[:, :, 0], data[:, :, 1], data[:, :, 2]]) labels.extend(["red", "green", "blue"]) if shp[2] == 4: comps.append(data[:, :, 3]) labels.append("alpha") else: comps = [data] labels = ["PRIMARY"] # look for AVM coordinate metadata try: from pyavm import AVM avm = AVM(str(file_name)) # avoid unicode wcs = avm.to_wcs() except: pass else: result.coords = coordinates_from_wcs(wcs) for c, l in zip(comps, labels): result.add_component(c, l) return result
def img_data(file_name): """Load common image files into a Glue data object""" result = Data() data = img_loader(file_name) data = np.flipud(data) shp = data.shape comps = [] labels = [] # split 3 color images into each color plane if len(shp) == 3 and shp[2] in [3, 4]: comps.extend([data[:, :, 0], data[:, :, 1], data[:, :, 2]]) labels.extend(['red', 'green', 'blue']) if shp[2] == 4: comps.append(data[:, :, 3]) labels.append('alpha') else: comps = [data] labels = ['PRIMARY'] # look for AVM coordinate metadata try: from pyavm import AVM avm = AVM(str(file_name)) # avoid unicode wcs = avm.to_wcs() except: pass else: result.coords = coordinates_from_wcs(wcs) for c, l in zip(comps, labels): result.add_component(c, l) return result
def make_rgb_image(data, output, indices=(0, 1, 2), \ vmin_r=None, vmax_r=None, pmin_r=0.25, pmax_r=99.75, \ stretch_r='linear', vmid_r=None, exponent_r=2, \ vmin_g=None, vmax_g=None, pmin_g=0.25, pmax_g=99.75, \ stretch_g='linear', vmid_g=None, exponent_g=2, \ vmin_b=None, vmax_b=None, pmin_b=0.25, pmax_b=99.75, \ stretch_b='linear', vmid_b=None, exponent_b=2, \ embed_avm_tags=True): ''' Make an RGB image from a FITS RGB cube or from three FITS files. Parameters ---------- data : str or tuple or list If a string, this is the filename of an RGB FITS cube. If a tuple or list, this should give the filename of three files to use for the red, green, and blue channel. output : str The output filename. The image type (e.g. PNG, JPEG, TIFF, ...) will be determined from the extension. Any image type supported by the Python Imaging Library can be used. indices : tuple, optional If data is the filename of a FITS cube, these indices are the positions in the third dimension to use for red, green, and blue respectively. The default is to use the first three indices. vmin_r, vmin_g, vmin_b : float, optional Minimum pixel value to use for the red, green, and blue channels. If set to None for a given channel, the minimum pixel value for that channel is determined using the corresponding pmin_x argument (default). vmax_r, vmax_g, vmax_b : float, optional Maximum pixel value to use for the red, green, and blue channels. If set to None for a given channel, the maximum pixel value for that channel is determined using the corresponding pmax_x argument (default). pmin_r, pmin_r, pmin_g : float, optional Percentile values used to determine for a given channel the minimum pixel value to use for that channel if the corresponding vmin_x is set to None. The default is 0.25% for all channels. pmax_r, pmax_g, pmax_b : float, optional Percentile values used to determine for a given channel the maximum pixel value to use for that channel if the corresponding vmax_x is set to None. The default is 99.75% for all channels. stretch_r, stretch_g, stretch_b : { 'linear', 'log', 'sqrt', 'arcsinh', 'power' } The stretch function to use for the different channels. vmid_r, vmid_g, vmid_b : float, optional Baseline values used for the log and arcsinh stretches. If set to None, this is set to zero for log stretches and to vmin - (vmax - vmin) / 30. for arcsinh stretches exponent_r, exponent_g, exponent_b : float, optional If stretch_x is set to 'power', this is the exponent to use. embed_avm_tags : bool, optional Whether to embed AVM tags inside the image - this can only be done for JPEG and PNG files, and only if PyAVM is installed. ''' try: from PIL import Image except ImportError: try: import Image except ImportError: raise ImportError("The Python Imaging Library (PIL) is required to make an RGB image") if isinstance(data, basestring): image = fits.getdata(data) image_r = image[indices[0], :, :] image_g = image[indices[1], :, :] image_b = image[indices[2], :, :] # Read in header header = fits.getheader(data) # Remove information about third dimension header['NAXIS'] = 2 for key in ['NAXIS', 'CTYPE', 'CRPIX', 'CRVAL', 'CUNIT', 'CDELT', 'CROTA']: for coord in range(3, 6): name = key + str(coord) if name in header: header.__delitem__(name) elif (type(data) == list or type(data) == tuple) and len(data) == 3: filename_r, filename_g, filename_b = data image_r = fits.getdata(filename_r) image_g = fits.getdata(filename_g) image_b = fits.getdata(filename_b) # Read in header header = fits.getheader(filename_r) else: raise Exception("data should either be the filename of a FITS cube or a list/tuple of three images") log.info("Red:") image_r = Image.fromarray(_data_stretch(image_r, \ vmin=vmin_r, vmax=vmax_r, \ pmin=pmin_r, pmax=pmax_r, \ stretch=stretch_r, \ vmid=vmid_r, \ exponent=exponent_r)) log.info("Green:") image_g = Image.fromarray(_data_stretch(image_g, \ vmin=vmin_g, vmax=vmax_g, \ pmin=pmin_g, pmax=pmax_g, \ stretch=stretch_g, \ vmid=vmid_g, \ exponent=exponent_g)) log.info("Blue:") image_b = Image.fromarray(_data_stretch(image_b, \ vmin=vmin_b, vmax=vmax_b, \ pmin=pmin_b, pmax=pmax_b, \ stretch=stretch_b, \ vmid=vmid_b, \ exponent=exponent_b)) img = Image.merge("RGB", (image_r, image_g, image_b)) img = img.transpose(Image.FLIP_TOP_BOTTOM) img.save(output) if embed_avm_tags: try: import pyavm except ImportError: warnings.warn("PyAVM 0.9.1 or later is not installed, so AVM tags will not be embedded in RGB image") return if version.LooseVersion(pyavm.__version__) < version.LooseVersion('0.9.1'): warnings.warn("PyAVM 0.9.1 or later is not installed, so AVM tags will not be embedded in RGB image") return from pyavm import AVM if output.lower().endswith(('.jpg', '.jpeg', '.png')): avm = AVM.from_header(header) avm.embed(output, output) else: warnings.warn("AVM tags will not be embedded in RGB image, as only JPEG and PNG files are supported")
print cat_ngfs['ID'][i], ' ', cat_ngfs['M_i'][i], ' ', cat_ngfs['mu_i'][i] sys.exit() n = np.int(np.ceil(np.sqrt(len(cat_ngfs)))) n_column = 6 n_row = np.int(np.ceil(len(cat_ngfs) * 1. / n_column)) fig = plt.figure(figsize=(14., 14. * n_row / n_column), dpi=300) gs = gridspec.GridSpec(n_row, n_column) gs.update(left=0.03, right=0.97, bottom=0.03, top=0.97, wspace=0.2, hspace=0.2) # Now reading the HD rgb image im_data = np.flipud(skimage.io.imread(im_rgb_hd_file)) im_size = im_data.shape avm = AVM.from_image(im_rgb_hd_file) w = avm.to_wcs() w.naxis1 = im_size[1] w.naxis2 = im_size[0] # Sort them by magnitude cat_ngfs.sort('m_i') cat_ngfs_coo = SkyCoord(cat_ngfs['RA'], cat_ngfs['DEC'], unit="deg") for i in np.arange(len(cat_ngfs)): print 'Processing NGFS dwarf ', cat_ngfs['ID'][i] ax = plt.subplot(gs[i]) ax.set_aspect('equal') ax.axis('off')
def make_rgb_image(data, output, indices=(0, 1, 2), \ vmin_r=None, vmax_r=None, pmin_r=0.25, pmax_r=99.75, \ stretch_r='linear', vmid_r=None, exponent_r=2, \ vmin_g=None, vmax_g=None, pmin_g=0.25, pmax_g=99.75, \ stretch_g='linear', vmid_g=None, exponent_g=2, \ vmin_b=None, vmax_b=None, pmin_b=0.25, pmax_b=99.75, \ stretch_b='linear', vmid_b=None, exponent_b=2, \ embed_avm_tags=False): ''' Make an RGB image from a FITS RGB cube or from three FITS files Required arguments: *data*: [ string | tuple | list ] If a string, this is the filename of an RGB FITS cube. If a tuple or list, this should give the filename of three files to use for the red, green, and blue channel. *output*: [ string ] The output filename. The image type (e.g. PNG, JPEG, TIFF, ...) will be determined from the extension. Any image type supported by the Python Imaging Library can be used. Optional keyword arguments: *indices*: [ tuple ] If data is the filename of a FITS cube, these indices are the positions in the third dimension to use for red, green, and blue respectively. The default is to use the first three indices. *vmin_r*: [ None | float ] *vmin_g*: [ None | float ] *vmin_b*: [ None | float ] Minimum pixel value to use for the red, green, and blue channels. If set to None for a given channel, the minimum pixel value for that channel is determined using the corresponding pmin_x argument (default). *vmax_r*: [ None | float ] *vmax_g*: [ None | float ] *vmax_b*: [ None | float ] Maximum pixel value to use for the red, green, and blue channels. If set to None for a given channel, the maximum pixel value for that channel is determined using the corresponding pmax_x argument (default). *pmin_r*: [ float ] *pmin_g*: [ float ] *pmin_b*: [ float ] Percentile values used to determine for a given channel the minimum pixel value to use for that channel if the corresponding vmin_x is set to None. The default is 0.25% for all channels. *pmax_r*: [ float ] *pmax_g*: [ float ] *pmax_b*: [ float ] Percentile values used to determine for a given channel the maximum pixel value to use for that channel if the corresponding vmax_x is set to None. The default is 99.75% for all channels. *stretch_r*: [ 'linear' | 'log' | 'sqrt' | 'arcsinh' | 'power' ] *stretch_g*: [ 'linear' | 'log' | 'sqrt' | 'arcsinh' | 'power' ] *stretch_b*: [ 'linear' | 'log' | 'sqrt' | 'arcsinh' | 'power' ] The stretch function to use for the different channels. *vmid_r*: [ None | float ] *vmid_g*: [ None | float ] *vmid_b*: [ None | float ] Baseline values used for the log and arcsinh stretches. If set to None, this is set to zero for log stretches and to vmin - (vmax - vmin) / 30. for arcsinh stretches *exponent_r*: [ float ] *exponent_g*: [ float ] *exponent_b*: [ float ] If stretch_x is set to 'power', this is the exponent to use. ''' if not installed_pil: raise Exception( "The Python Imaging Library (PIL) is not installed but is required for this function" ) if isinstance(data, basestring): image = pyfits.getdata(data) image_r = image[indices[0], :, :] image_g = image[indices[1], :, :] image_b = image[indices[2], :, :] # Read in header header = pyfits.getheader(data) # Remove information about third dimension header['NAXIS'] = 2 for key in [ 'NAXIS', 'CTYPE', 'CRPIX', 'CRVAL', 'CUNIT', 'CDELT', 'CROTA' ]: for coord in range(3, 6): name = key + str(coord) if name in header: header.__delitem__(name) elif (type(data) == list or type(data) == tuple) and len(data) == 3: filename_r, filename_g, filename_b = data image_r = pyfits.getdata(filename_r) image_g = pyfits.getdata(filename_g) image_b = pyfits.getdata(filename_b) # Read in header header = pyfits.getheader(filename_r) else: raise Exception( "data should either be the filename of a FITS cube or a list/tuple of three images" ) logger.info("Red:") image_r = Image.fromarray(_data_stretch(image_r, \ vmin=vmin_r, vmax=vmax_r, \ pmin=pmin_r, pmax=pmax_r, \ stretch=stretch_r, \ vmid=vmid_r, \ exponent=exponent_r)) logger.info("\nGreen:") image_g = Image.fromarray(_data_stretch(image_g, \ vmin=vmin_g, vmax=vmax_g, \ pmin=pmin_g, pmax=pmax_g, \ stretch=stretch_g, \ vmid=vmid_g, \ exponent=exponent_g)) logger.info("\nBlue:") image_b = Image.fromarray(_data_stretch(image_b, \ vmin=vmin_b, vmax=vmax_b, \ pmin=pmin_b, pmax=pmax_b, \ stretch=stretch_b, \ vmid=vmid_b, \ exponent=exponent_b)) img = Image.merge("RGB", (image_r, image_g, image_b)) img = img.transpose(Image.FLIP_TOP_BOTTOM) img.save(output) if embed_avm_tags: if not avm_installed: raise Exception( "PyAVM needs to be installed in order to be able to embed AVM tags into the RGB image" ) else: avm = AVM(header) avm.embed(output, output) return
def make_rgb_image(data, output, indices=(0, 1, 2), \ vmin_r=None, vmax_r=None, pmin_r=0.25, pmax_r=99.75, \ stretch_r='linear', vmid_r=None, exponent_r=2, \ vmin_g=None, vmax_g=None, pmin_g=0.25, pmax_g=99.75, \ stretch_g='linear', vmid_g=None, exponent_g=2, \ vmin_b=None, vmax_b=None, pmin_b=0.25, pmax_b=99.75, \ stretch_b='linear', vmid_b=None, exponent_b=2, \ embed_avm_tags=False): ''' Make an RGB image from a FITS RGB cube or from three FITS files Required arguments: *data*: [ string | tuple | list ] If a string, this is the filename of an RGB FITS cube. If a tuple or list, this should give the filename of three files to use for the red, green, and blue channel. *output*: [ string ] The output filename. The image type (e.g. PNG, JPEG, TIFF, ...) will be determined from the extension. Any image type supported by the Python Imaging Library can be used. Optional keyword arguments: *indices*: [ tuple ] If data is the filename of a FITS cube, these indices are the positions in the third dimension to use for red, green, and blue respectively. The default is to use the first three indices. *vmin_r*: [ None | float ] *vmin_g*: [ None | float ] *vmin_b*: [ None | float ] Minimum pixel value to use for the red, green, and blue channels. If set to None for a given channel, the minimum pixel value for that channel is determined using the corresponding pmin_x argument (default). *vmax_r*: [ None | float ] *vmax_g*: [ None | float ] *vmax_b*: [ None | float ] Maximum pixel value to use for the red, green, and blue channels. If set to None for a given channel, the maximum pixel value for that channel is determined using the corresponding pmax_x argument (default). *pmin_r*: [ float ] *pmin_g*: [ float ] *pmin_b*: [ float ] Percentile values used to determine for a given channel the minimum pixel value to use for that channel if the corresponding vmin_x is set to None. The default is 0.25% for all channels. *pmax_r*: [ float ] *pmax_g*: [ float ] *pmax_b*: [ float ] Percentile values used to determine for a given channel the maximum pixel value to use for that channel if the corresponding vmax_x is set to None. The default is 99.75% for all channels. *stretch_r*: [ 'linear' | 'log' | 'sqrt' | 'arcsinh' | 'power' ] *stretch_g*: [ 'linear' | 'log' | 'sqrt' | 'arcsinh' | 'power' ] *stretch_b*: [ 'linear' | 'log' | 'sqrt' | 'arcsinh' | 'power' ] The stretch function to use for the different channels. *vmid_r*: [ None | float ] *vmid_g*: [ None | float ] *vmid_b*: [ None | float ] Baseline values used for the log and arcsinh stretches. If set to None, this is set to zero for log stretches and to vmin - (vmax - vmin) / 30. for arcsinh stretches *exponent_r*: [ float ] *exponent_g*: [ float ] *exponent_b*: [ float ] If stretch_x is set to 'power', this is the exponent to use. ''' if not installed_pil: raise Exception("The Python Imaging Library (PIL) is not installed but is required for this function") if isinstance(data, basestring): image = pyfits.getdata(data) image_r = image[indices[0], :, :] image_g = image[indices[1], :, :] image_b = image[indices[2], :, :] # Read in header header = pyfits.getheader(data) # Remove information about third dimension header['NAXIS'] = 2 for key in ['NAXIS', 'CTYPE', 'CRPIX', 'CRVAL', 'CUNIT', 'CDELT', 'CROTA']: for coord in range(3, 6): name = key + str(coord) if name in header: header.__delitem__(name) elif (type(data) == list or type(data) == tuple) and len(data) == 3: filename_r, filename_g, filename_b = data image_r = pyfits.getdata(filename_r) image_g = pyfits.getdata(filename_g) image_b = pyfits.getdata(filename_b) # Read in header header = pyfits.getheader(filename_r) else: raise Exception("data should either be the filename of a FITS cube or a list/tuple of three images") logger.info("Red:") image_r = Image.fromarray(_data_stretch(image_r, \ vmin=vmin_r, vmax=vmax_r, \ pmin=pmin_r, pmax=pmax_r, \ stretch=stretch_r, \ vmid=vmid_r, \ exponent=exponent_r)) logger.info("\nGreen:") image_g = Image.fromarray(_data_stretch(image_g, \ vmin=vmin_g, vmax=vmax_g, \ pmin=pmin_g, pmax=pmax_g, \ stretch=stretch_g, \ vmid=vmid_g, \ exponent=exponent_g)) logger.info("\nBlue:") image_b = Image.fromarray(_data_stretch(image_b, \ vmin=vmin_b, vmax=vmax_b, \ pmin=pmin_b, pmax=pmax_b, \ stretch=stretch_b, \ vmid=vmid_b, \ exponent=exponent_b)) img = Image.merge("RGB", (image_r, image_g, image_b)) img = img.transpose(Image.FLIP_TOP_BOTTOM) img.save(output) if embed_avm_tags: if not avm_installed: raise Exception("PyAVM needs to be installed in order to be able to embed AVM tags into the RGB image") else: avm = AVM(header) avm.embed(output, output) return
def make_rgb_image(data, output, indices=(0, 1, 2), vmin_r=None, vmax_r=None, pmin_r=0.25, pmax_r=99.75, stretch_r='linear', vmid_r=None, exponent_r=2, vmin_g=None, vmax_g=None, pmin_g=0.25, pmax_g=99.75, stretch_g='linear', vmid_g=None, exponent_g=2, vmin_b=None, vmax_b=None, pmin_b=0.25, pmax_b=99.75, stretch_b='linear', vmid_b=None, exponent_b=2, make_nans_transparent=False, embed_avm_tags=True): """ Make an RGB image from a FITS RGB cube or from three FITS files. Parameters ---------- data : str or tuple or list If a string, this is the filename of an RGB FITS cube. If a tuple or list, this should give the filename of three files to use for the red, green, and blue channel. output : str The output filename. The image type (e.g. PNG, JPEG, TIFF, ...) will be determined from the extension. Any image type supported by the Python Imaging Library can be used. indices : tuple, optional If data is the filename of a FITS cube, these indices are the positions in the third dimension to use for red, green, and blue respectively. The default is to use the first three indices. vmin_r, vmin_g, vmin_b : float, optional Minimum pixel value to use for the red, green, and blue channels. If set to None for a given channel, the minimum pixel value for that channel is determined using the corresponding pmin_x argument (default). vmax_r, vmax_g, vmax_b : float, optional Maximum pixel value to use for the red, green, and blue channels. If set to None for a given channel, the maximum pixel value for that channel is determined using the corresponding pmax_x argument (default). pmin_r, pmin_r, pmin_g : float, optional Percentile values used to determine for a given channel the minimum pixel value to use for that channel if the corresponding vmin_x is set to None. The default is 0.25% for all channels. pmax_r, pmax_g, pmax_b : float, optional Percentile values used to determine for a given channel the maximum pixel value to use for that channel if the corresponding vmax_x is set to None. The default is 99.75% for all channels. stretch_r, stretch_g, stretch_b : { 'linear', 'log', 'sqrt', 'arcsinh', 'power' } The stretch function to use for the different channels. vmid_r, vmid_g, vmid_b : float, optional Baseline values used for the log and arcsinh stretches. If set to None, this is set to zero for log stretches and to vmin - (vmax - vmin) / 30. for arcsinh stretches exponent_r, exponent_g, exponent_b : float, optional If stretch_x is set to 'power', this is the exponent to use. make_nans_transparent : bool, optional If set AND output is png, will add an alpha layer that sets pixels containing a NaN to transparent. embed_avm_tags : bool, optional Whether to embed AVM tags inside the image - this can only be done for JPEG and PNG files, and only if PyAVM is installed. """ try: from PIL import Image except ImportError: try: import Image except ImportError: raise ImportError( "The Python Imaging Library (PIL) is required to make an RGB image" ) if isinstance(data, six.string_types): image = fits.getdata(data) image_r = image[indices[0], :, :] image_g = image[indices[1], :, :] image_b = image[indices[2], :, :] # Read in header header = fits.getheader(data) # Remove information about third dimension header['NAXIS'] = 2 for key in [ 'NAXIS', 'CTYPE', 'CRPIX', 'CRVAL', 'CUNIT', 'CDELT', 'CROTA' ]: for coord in range(3, 6): name = key + str(coord) if name in header: header.__delitem__(name) elif (type(data) == list or type(data) == tuple) and len(data) == 3: filename_r, filename_g, filename_b = data image_r = fits.getdata(filename_r) image_g = fits.getdata(filename_g) image_b = fits.getdata(filename_b) # Read in header header = fits.getheader(filename_r) else: raise Exception( "data should either be the filename of a FITS cube or a list/tuple of three images" ) # are we making a transparent layer? do_alpha = make_nans_transparent and output.lower().endswith('.png') if do_alpha: log.info("Making alpha layer") # initialize alpha layer image_alpha = np.empty_like(image_r, dtype=np.uint8) image_alpha[:] = 255 # look for nans in images for im in [image_r, image_g, image_b]: image_alpha[np.isnan(im)] = 0 log.info("Red:") image_r = Image.fromarray( _data_stretch(image_r, vmin=vmin_r, vmax=vmax_r, pmin=pmin_r, pmax=pmax_r, stretch=stretch_r, vmid=vmid_r, exponent=exponent_r)) log.info("Green:") image_g = Image.fromarray( _data_stretch(image_g, vmin=vmin_g, vmax=vmax_g, pmin=pmin_g, pmax=pmax_g, stretch=stretch_g, vmid=vmid_g, exponent=exponent_g)) log.info("Blue:") image_b = Image.fromarray( _data_stretch(image_b, vmin=vmin_b, vmax=vmax_b, pmin=pmin_b, pmax=pmax_b, stretch=stretch_b, vmid=vmid_b, exponent=exponent_b)) img = Image.merge("RGB", (image_r, image_g, image_b)) if do_alpha: # convert to RGBA and add alpha layer image_alpha = Image.fromarray(image_alpha) img.convert("RGBA") img.putalpha(image_alpha) img = img.transpose(Image.FLIP_TOP_BOTTOM) img.save(output) if embed_avm_tags: try: import pyavm except ImportError: warnings.warn( "PyAVM 0.9.1 or later is not installed, so AVM tags will not be embedded in RGB image" ) return if version.LooseVersion( pyavm.__version__) < version.LooseVersion('0.9.1'): warnings.warn( "PyAVM 0.9.1 or later is not installed, so AVM tags will not be embedded in RGB image" ) return from pyavm import AVM if output.lower().endswith(('.jpg', '.jpeg', '.png')): avm = AVM.from_header(header) avm.embed(output, output) else: warnings.warn( "AVM tags will not be embedded in RGB image, as only JPEG and PNG files are supported" )
def main(argv): config_file=None list_file=None try: opts, args = getopt.getopt(argv,"hc:l:p:f:",["config=","list=","prefix=","filters="]) except getopt.GetoptError: print 'make_rgb_image.py -c <configuration file> -l <image file list> -p <prefix> -f <filters>' sys.exit(2) for opt, arg in opts: if opt == '-h': print 'make_rgb_image.py -c <configuration file> -l <image file list> -p <prefix> -f <filters>' sys.exit() elif opt in ("-c", "--config"): config_file = arg elif opt in ("-l", "--list"): list_file = arg elif opt in ("-p", "--prefix"): prefix = arg elif opt in ("-f", "--filters"): filters = string.split(arg,',') if config_file is None or list_file is None: raise ArgumentError("You need to supply a configuration file and an image file list") print 'Configuration file is ', config_file print 'Image file list is ', list_file config_data = ConfigParser.ConfigParser() config_data.read(config_file) prefix=config_data.get('Stack','prefix') filters=string.split(config_data.get('Stack','filters'),',') stack_name=config_data.get('Stack','stack_name') stack_version=config_data.get('Stack','stack_version') stack_tile_ref=config_data.get('Stack','stack_tile_ref') stack_filter_ref=config_data.get('Stack','stack_filter_ref') list_data = np.loadtxt(list_file, dtype={'names': ('tile', 'image', 'catalog'), 'formats': ('S10', 'S50', 'S50')}) stack_tile=np.unique(list_data['tile']) image_file=list_data['image'] catalog_file=list_data['catalog'] stack_filter=filters print "List of tiles: ", stack_tile print "List of filters: ", stack_filter_ref im_rgb_hd_file= '../catalogs/ngfs_tile1_rgb_asinh_v2.jpg' im_rgb_sd_file= '../catalogs/ngfs_tile1_rgb_asinh_v2_sd.png' cat_ngfs_nuc=ascii.read('../catalogs/NGFS_FCC_cat_nucleated.dat', format='fixed_width') #, fill_values=('', 'NA')) cat_ngfs_non=ascii.read('../catalogs/NGFS_FCC_cat_non_nucleated.dat', format='fixed_width') #, fill_values=('', 'NA')) decam_scale=0.263*u.arcsec fornax_distance=20.0*u.Mpc dwarf_zoom_radius=Angle(30*u.arcsec) #cat_ngfs_nuc.add_row() cat_ngfs=cat_ngfs_nuc cat_ngfs.add_column( Column( np.full(len(cat_ngfs),np.nan), name='mu_i' ) ) cat_ngfs['mu_i']=cat_ngfs['m_i']+2.5*np.log10(2*np.pi* cat_ngfs['reff_arcsec']**2 ) gv=cat_ngfs['Reference'].mask.nonzero() # Look for the masked values cat_ngfs['Reference'][gv]='' # Replace the masked values with a null string n=np.int(np.ceil(np.sqrt(len(cat_ngfs)))) fig = plt.figure(figsize=(14.,14.), dpi=300) gs=gridspec.GridSpec(n, n) gs.update(left=0.03, right=0.97, bottom=0.03, top=0.97, wspace=0.2, hspace=0.2) # Now reading the HD rgb image im_data = np.flipud(skimage.io.imread(im_rgb_hd_file)) im_size= im_data.shape avm=AVM.from_image(im_rgb_hd_file) w = avm.to_wcs() w.naxis1=im_size[1] w.naxis2=im_size[0] # Sort them by magnitude cat_ngfs.sort('M_i') cat_ngfs_coo = SkyCoord(cat_ngfs['RA'], cat_ngfs['DEC'], unit="deg") for i in np.arange(len(cat_ngfs)): print 'Processing NGFS dwarf ', cat_ngfs['ID'][i] ax=plt.subplot(gs[i]) ax.set_aspect('equal') ax.axis('off') im_crop_coo=w.wcs_world2pix([[ cat_ngfs_coo.ra[i].deg,(cat_ngfs_coo.dec[i]+dwarf_zoom_radius).deg],[cat_ngfs_coo.ra[i].deg,(cat_ngfs_coo.dec[i]-dwarf_zoom_radius).deg]], 1) im_crop_size=(np.abs(im_crop_coo[0,1]-im_crop_coo[1,1])*np.asarray([1.,1.])).astype(int) im_crop_coo=(w.wcs_world2pix([[ cat_ngfs_coo.ra[i].deg, cat_ngfs_coo.dec[i].deg]], 1)[0]).astype(int) im_crop_data=im_data[im_crop_coo[1]-im_crop_size[1]/2:im_crop_coo[1]+im_crop_size[1]/2,im_crop_coo[0]-im_crop_size[0]/2:im_crop_coo[0]+im_crop_size[0]/2] skimage.io.imsave('dwarf_zoom.png', np.flipud(im_crop_data)) im_crop_size= im_crop_data.shape w_crop=w[:] w_crop.naxis1=im_crop_size[1] w_crop.naxis2=im_crop_size[0] w_crop.wcs.crpix[0] -= (im_crop_coo[0]-im_crop_size[0]/2) w_crop.wcs.crpix[1] -= (im_crop_coo[1]-im_crop_size[1]/2) f = aplpy.FITSFigure(w_crop, figure=fig, subplot=list(ax.get_position().bounds) ) f.axis_labels.hide() f.tick_labels.hide() f.ticks.hide() f.show_rgb('dwarf_zoom.png') # f.add_label( (cat_ngfs_coo.ra[i]+dwarf_zoom_radius*1.).deg, (cat_ngfs_coo.dec[i]-dwarf_zoom_radius*0.8).deg, cat_ngfs['ID'][i], size=7, color='silver', horizontalalignment='left', alpha=0.8, family='sans-serif', style='italic' ) # f.add_label( (cat_ngfs_coo.ra[i]+dwarf_zoom_radius*1.).deg, (cat_ngfs_coo.dec[i]-dwarf_zoom_radius*0.95).deg, cat_ngfs['Reference'][i], size=7, color='silver', horizontalalignment='left', alpha=0.8, family='sans-serif', style='italic' ) fig.savefig('../figures/NGFS_dwarfs_nucleated_tile1_SORT_total_magnitude_nolabels.pdf', dpi=300) sys.exit() cat_ngfs.sort('mu_i') cat_ngfs_coo = SkyCoord(cat_ngfs['RA'], cat_ngfs['DEC'], unit="deg") for i in np.arange(len(cat_ngfs)): print 'Processing NGFS dwarf ', cat_ngfs['ID'][i] ax=plt.subplot(gs[i]) ax.set_aspect('equal') ax.axis('off') im_crop_coo=w.wcs_world2pix([[ cat_ngfs_coo.ra[i].deg,(cat_ngfs_coo.dec[i]+dwarf_zoom_radius).deg],[cat_ngfs_coo.ra[i].deg,(cat_ngfs_coo.dec[i]-dwarf_zoom_radius).deg]], 1) im_crop_size=(np.abs(im_crop_coo[0,1]-im_crop_coo[1,1])*np.asarray([1.,1.])).astype(int) im_crop_coo=(w.wcs_world2pix([[ cat_ngfs_coo.ra[i].deg, cat_ngfs_coo.dec[i].deg]], 1)[0]).astype(int) im_crop_data=im_data[im_crop_coo[1]-im_crop_size[1]/2:im_crop_coo[1]+im_crop_size[1]/2,im_crop_coo[0]-im_crop_size[0]/2:im_crop_coo[0]+im_crop_size[0]/2] skimage.io.imsave('dwarf_zoom.png', np.flipud(im_crop_data)) im_crop_size= im_crop_data.shape w_crop=w[:] w_crop.naxis1=im_crop_size[1] w_crop.naxis2=im_crop_size[0] w_crop.wcs.crpix[0] -= (im_crop_coo[0]-im_crop_size[0]/2) w_crop.wcs.crpix[1] -= (im_crop_coo[1]-im_crop_size[1]/2) f = aplpy.FITSFigure(w_crop, figure=fig, subplot=list(ax.get_position().bounds) ) f.axis_labels.hide() f.tick_labels.hide() f.ticks.hide() f.show_rgb('dwarf_zoom.png') f.add_label( (cat_ngfs_coo.ra[i]+dwarf_zoom_radius*1.).deg, (cat_ngfs_coo.dec[i]-dwarf_zoom_radius*0.8).deg, cat_ngfs['ID'][i], size=7, color='silver', horizontalalignment='left', alpha=0.8, family='sans-serif', style='italic' ) f.add_label( (cat_ngfs_coo.ra[i]+dwarf_zoom_radius*1.).deg, (cat_ngfs_coo.dec[i]-dwarf_zoom_radius*0.95).deg, cat_ngfs['Reference'][i], size=7, color='silver', horizontalalignment='left', alpha=0.8, family='sans-serif', style='italic' ) fig.savefig('../figures/NGFS_dwarfs_nucleated_tile1_SORT_surface_brightness.pdf', dpi=300)
def overlay( image, bdf, # basic inputs l1=0.0, l2=1.0, # levels shift=[0.0, 0.0], # target shift from reference value radec=[0.0, 0.0], # target coords, if not ref value (d/s) nod=[0, 0], # shift from default ctr (in asec) showGrid=False, # show coordinate grid? stretch='linear', # 'log', 'linear', etc. invert=False, # invert a grayscale image? hdu=0, # HDU, if not 0. gray=True, readAVM=False): # plot colour, AVM read """ Overlay a SAMI bundle onto a fits image Adapted to astropy input. Inputs ------- image: fits image used for overlay; bdf: a 'bundle definition file', generate with the 'bundle_definition' function in this module. """ import aplpy import astropy.wcs as pywcs # is the input image a fits file? isfits = (image[len(image) - 5:] == '.fits') or (image[len(image) - 4:] == '.fit') # Use APLPy to read in the FITS file. fig = aplpy.FITSFigure(image, north=True, hdu=hdu) if (gray == True): fig.show_grayscale(vmin=l1, vmax=l2, stretch=stretch, invert=invert) else: fig.show_rgb() if showGrid == True: fig.show_grid() # Read the AVM of a jpg or tiff image: if readAVM == True: from pyavm import AVM avm = AVM(image) # read BDF tab = tab.read(bdf) # Get field centre coordinates -- quite messy, clean up. ctr = [0., 0.] # just initiate the field centre (list ok) # Input type: image loaded with Astro Visualisation Metadata -- if (np.mean(radec) == 0.0) and (readAVM != True) and (isfits != True): ctr = [0.0, 0.0] # if cannot find AVM, ctr=0,0 print("Warning: did not find a valid field centre definition") if (np.mean(radec) != 0.0) and (isfits != True): # respec' user input radec = np.array(radec) if radec.size > 2: # if input in sex, not dec from SAMI_sdss import ten ctr[0] = ten(radec[0], radec[1], radec[2], RA=True) ctr[1] = ten(radec[3], radec[4], radec[5]) else: ctr = radec if readAVM == True and (np.mean(radec) == 0.0): ctr = avm.Spatial.ReferenceValue # read AVM field centre # Input type: fits file -- if isfits: data = pf.open(image) wcs = pywcs.WCS(data[0].header) ctr = wcs.wcs.crval # apply 'nod' (fine positioning shift) if (nod[0] != 0) and (nod[1] != 0): nod[0] = nod[0] * 15 nod = np.array(nod) / 3600. ctr = np.array(ctr) - nod from SAMI_sdss import sixty stringer1 = 'Recentering to: ' + str(ctr[0]) + ' ' + str(ctr[1]) stringer2 = ' ie: ' + str(sixty(ctr[0],RA=True)) + \ ' ' + str(sixty(ctr[1])) print('') print(stringer1) print(stringer2) # shift SAMI bundle into place ra = tab['RA'] / np.cos(np.radians(ctr[1])) + ctr[0] dec = tab['DEC'] + ctr[1] # SAMI bundle (individual fibres) fig.show_circles(ra, dec, 0.8 / 3600., edgecolor='cyan', facecolor='cyan', alpha=0.5) # Exclusion radius fig.show_circles(ctr[0], ctr[1], 165. / 3600., edgecolor='green', facecolor='none', linewidth=3.)
def go( fits_paths = None, rgb_path = None, output_path = None, tile_path = None, work_dir = '', anet_bin_prefix = '', ): """ Do the whole thing. """ cfg = AlignmentConfig() index_fits_list = [] scale_low = scale_high = None for fits_num, fits_path in enumerate(fits_paths): logger.info('Processing reference science image `%s` ...', fits_path) try: info = source_extract_fits(fits_path, log_prefix=' ') except Exception as e: logger.warning(' Failed to extract sources from this file') logger.warning(' Caused by: %s', e) continue objects_fits = os.path.join(work_dir, f'objects{fits_num}.fits') info.wcs_objects.write(objects_fits, format='fits', overwrite=True) # Generate the Astrometry.Net index index_fits = os.path.join(work_dir, f'index{fits_num}.fits') index_log = os.path.join(work_dir, f'build-index-{fits_num}.log') try: index_extracted_image( objects_fits, index_fits, index_log = index_log, extraction_info = info, index_unique_key = str(fits_num), anet_bin_prefix = anet_bin_prefix, log_prefix = ' ', ) except Exception as e: logger.warning(' Failed to index this file') logger.warning(' Caused by: %s', e) continue # Success! index_fits_list.append(index_fits) this_scale_low = info.width_deg * 60 / cfg.scale_range_factor # units are image width in arcmin this_scale_high = info.width_deg * 60 * cfg.scale_range_factor if scale_low is None: scale_low = this_scale_low scale_high = this_scale_high else: scale_low = min(scale_low, this_scale_low) scale_high = max(scale_high, this_scale_high) if not index_fits_list: raise Exception('cannot align: failed to index any of the input FITS files') # Write out config file cfg_path = os.path.join(work_dir, 'aligner.cfg') with open(cfg_path, 'wt') as f: print('add_path', work_dir, file=f) print('inparallel', file=f) for p in index_fits_list: print('index', p, file=f) # Solve our input image wcs_file = os.path.join(work_dir, 'solved.fits') # https://manpages.debian.org/testing/astrometry.net/solve-field.1.en.html argv = [ anet_bin_prefix + 'solve-field', '-v', '--config', cfg_path, '--scale-units', 'arcminwidth', '--scale-low', str(scale_low), '--scale-high', str(scale_high), '--cpulimit', str(cfg.solve_time_limit_seconds), '--objs', str(cfg.object_limit), '--dir', work_dir, '-N', wcs_file, '--no-plots', '--no-tweak', '--downsample', str(cfg.downsample_factor), rgb_path, ] logger.debug('solve command: %s', ' '.join(argv)) solve_log = os.path.join(work_dir, 'solve-field.log') logger.info('Launching Astrometry.Net solver for `%s` ...', rgb_path) try: with open(solve_log, 'wb') as log: subprocess.check_call( argv, stdout = log, stderr = subprocess.STDOUT, shell = False, ) assert os.path.exists(wcs_file), 'Astrometry.Net did not emit a solution file' except Exception as e: logger.error(' Failed to solve this image') logger.error(' Proximate Python exception: %s', e) logger.error(' Output from solve-field:') try: with open(solve_log, 'r') as f: for line in f: logger.error(' %s', line.rstrip()) except Exception as sub_e: logger.error(' [failed to read the log! error: %s]', sub_e) raise # Convert solution to AVM, with hardcoded parity inversion. # # TODO: map positive parity into both AVM and WWT metadata correctly. img = ImageLoader().load_path(rgb_path) with fits.open(wcs_file) as hdul: header = hdul[0].header wcs = WCS(header) hdwork = wcs.to_header() hdwork['CRPIX2'] = img.height + 1 - hdwork['CRPIX2'] hdwork['PC1_2'] *= -1 hdwork['PC2_2'] *= -1 wcs = WCS(hdwork) avm = AVM.from_wcs(wcs, shape=(img.height, img.width)) # Apply AVM # # pyavm can't convert image formats, so if we've been asked to emit a tagged # imagine in a format different than the image format, we need to do that # conversion manually. We're not in a great position to be clever so we # assess "format" from filename extensions. in_name_pieces = os.path.splitext(os.path.basename(rgb_path)) if output_path is None: output_path = in_name_pieces[0] + '_tagged' + in_name_pieces[1] input_ext = in_name_pieces[1].lower() output_ext = os.path.splitext(output_path)[1].lower() if input_ext != output_ext: logger.info('Converting input image to create `%s`', output_path) img.save(output_path, format=output_ext.replace('.', '')) logger.info('Adding AVM tags to `%s`', output_path) avm.embed(output_path, output_path) else: logger.info('Writing AVM-tagged image to:`%s`', output_path) avm.embed(rgb_path, output_path) # Tile it for WWT, if requested if tile_path is not None: from toasty.merge import averaging_merger, cascade_images from toasty.pyramid import PyramidIO logger.info('Creating base layer of WWT tiling ...') pio = PyramidIO(tile_path, default_format=img.default_format) builder = Builder(pio) builder.make_thumbnail_from_other(img) builder.tile_base_as_study(img, cli_progress=True) builder.apply_wcs_info(wcs, img.width, img.height) builder.set_name(in_name_pieces[0]) builder.write_index_rel_wtml() logger.info('Cascading tiles ...') cascade_images( pio, builder.imgset.tile_levels, averaging_merger, cli_progress=True )