Esempio n. 1
0
def performance_for_features(feat_idxs):
    # train classifier
    knn = KNeighborsClassifier(n_neighbors=3)
    knn.fit(f_train_norm[:, feat_idxs], c_train)

    # predict and evaluate performance
    prediction = knn.predict(f_test_norm[:, feat_idxs])
    return performance(prediction, c_test)
Esempio n. 2
0
X_train = X_train[:, s_clean]

# Paso 3-Training: Normalizacion
#         > Training: 211 x 387
X_train, a, b = normalize(X_train)

# Paso 4-Training: SFS
#         > Training: 211 x 40
s_sfs = sfs(X_train, d_train, n_features=40, method="fisher", show=True)
X_train = X_train[:, s_sfs]

# Paso 5-Training: PCA
#         > Training: 211 x 10
X_train, _, A, Xm, _ = pca(X_train, n_components=10)

# *** DEFINCION DE DATOS PARA EL TESTING ***

X_test = X_test[:, s_clean]  # Paso 2: clean
X_test = X_test * a + b  # Paso 3: normalizacion
X_test = X_test[:, s_sfs]  # Paso 4: SFS
X_test = np.matmul(X_test - Xm, A)  # Paso 5: PCA

# *** ENTRENAMIENTO CON DATOS DE TRAINING Y PRUEBA CON DATOS DE TESTING ***

knn = KNN(n_neighbors=1)
knn.fit(X_train, d_train)
Y_pred = knn.predict(X_test)
accuracy = performance(Y_pred, d_test)

print("Accuracy = " + str(accuracy))
Esempio n. 3
0
# Leemos los datos.
mat1 = loadmat('DATOS1.mat')
mat2 = loadmat('DATOS2.mat')

# Cantidad de features.
N_FEATURES = 15

# Obtenemos X,Y
X, Y = mat2["X"], mat2["Y"].squeeze()

# Selección de features
selected_feats = sfs(X, Y, n_features=N_FEATURES, method="fisher", show=False)

# Separamos los datos de entrenamiento y testing.
Xtrain, Ytrain = mat1["Xtrain"], mat1["Ytrain"].squeeze()
Xtest, Ytest = mat1["Xtest"], mat1["Ytest"].squeeze()

# Se definen Xtrain_new,Xtest_new con las features seleccionadas.
Xtrain_new, Xtest_new = Xtrain[:, selected_feats], Xtest[:, selected_feats]

# Se define el modelo y se entrena.
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(Xtrain_new, Ytrain)

# Se obtiene la predicción
Ypred_new = knn.predict(Xtest_new)

# Computamos el accuracy.
result = performance(Ypred_new, Ytest)
print(result)
Esempio n. 4
0
(c) Solución proporcionada por: 
Germán Leandro Contreras Sagredo, Daniel Vives
Santiago de Chile, 04 de Abril de 2019
Universidad Católica de Chile
'''

# Librerías a utilizar

from scipy.io import loadmat  # Lectura de archivos.
from sklearn.neighbors import KNeighborsClassifier  # Modelo KNN
from pybalu.performance_eval import performance  # Cómputo del accuracy.

# Leemos los datos.
mat = loadmat('DATOS1.mat')

# Separamos los datos de entrenamiento y testing.
Xtrain, Ytrain = mat["Xtrain"], mat["Ytrain"].squeeze()
Xtest, Ytest = mat["Xtest"], mat["Ytest"].squeeze()

# Se define el modelo y se entrena.
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(Xtrain, Ytrain)

# Se obtiene la predicción
Ypred = knn.predict(Xtest)

# Computamos el accuracy.
result = performance(Ypred, Ytest)
print(result)