def set_algebraic(self, variables):

        param = self.param
        applied_current = variables["Total current density"]
        cc_area = self._get_effective_current_collector_area()
        z = pybamm.standard_spatial_vars.z

        phi_s_cn = variables["Negative current collector potential"]
        phi_s_cp = variables["Positive current collector potential"]
        i_boundary_cc = variables["Current collector current density"]
        i_boundary_cc_0 = variables[
            "Leading-order current collector current density"]
        c = variables["Lagrange multiplier"]

        # Note that the second argument of 'source' must be the same as the argument
        # in the laplacian (the variable to which the boundary conditions are applied)
        self.algebraic = {
            phi_s_cn: (param.sigma_cn * param.delta**2 * param.l_cn) *
            pybamm.laplacian(phi_s_cn) -
            pybamm.source(i_boundary_cc_0, phi_s_cn),
            i_boundary_cc: (param.sigma_cp * param.delta**2 * param.l_cp) *
            pybamm.laplacian(phi_s_cp) +
            pybamm.source(i_boundary_cc_0, phi_s_cp) +
            c * pybamm.PrimaryBroadcast(cc_area, "current collector"),
            c:
            pybamm.Integral(i_boundary_cc, z) - applied_current / cc_area +
            pybamm.Multiplication(0, c),
        }
    def test_convert_scalar_symbols(self):
        a = pybamm.Scalar(0)
        b = pybamm.Scalar(1)
        c = pybamm.Scalar(-1)
        d = pybamm.Scalar(2)
        e = pybamm.Scalar(3)
        g = pybamm.Scalar(3.3)

        self.assertEqual(a.to_casadi(), casadi.MX(0))
        self.assertEqual(d.to_casadi(), casadi.MX(2))

        # negate
        self.assertEqual((-b).to_casadi(), casadi.MX(-1))
        # absolute value
        self.assertEqual(abs(c).to_casadi(), casadi.MX(1))
        # floor
        self.assertEqual(pybamm.Floor(g).to_casadi(), casadi.MX(3))
        # ceiling
        self.assertEqual(pybamm.Ceiling(g).to_casadi(), casadi.MX(4))

        # function
        def square_plus_one(x):
            return x**2 + 1

        f = pybamm.Function(square_plus_one, b)
        self.assertEqual(f.to_casadi(), 2)

        def myfunction(x, y):
            return x + y

        f = pybamm.Function(myfunction, b, d)
        self.assertEqual(f.to_casadi(), casadi.MX(3))

        # use classes to avoid simplification
        # addition
        self.assertEqual((pybamm.Addition(a, b)).to_casadi(), casadi.MX(1))
        # subtraction
        self.assertEqual(pybamm.Subtraction(c, d).to_casadi(), casadi.MX(-3))
        # multiplication
        self.assertEqual(
            pybamm.Multiplication(c, d).to_casadi(), casadi.MX(-2))
        # power
        self.assertEqual(pybamm.Power(c, d).to_casadi(), casadi.MX(1))
        # division
        self.assertEqual(pybamm.Division(b, d).to_casadi(), casadi.MX(1 / 2))

        # modulo
        self.assertEqual(pybamm.Modulo(e, d).to_casadi(), casadi.MX(1))

        # minimum and maximum
        self.assertEqual(pybamm.Minimum(a, b).to_casadi(), casadi.MX(0))
        self.assertEqual(pybamm.Maximum(a, b).to_casadi(), casadi.MX(1))
Esempio n. 3
0
    def test_convert_scalar_symbols(self):
        a = pybamm.Scalar(0)
        b = pybamm.Scalar(1)
        c = pybamm.Scalar(-1)
        d = pybamm.Scalar(2)

        self.assertEqual(a.to_casadi(), casadi.MX(0))
        self.assertEqual(d.to_casadi(), casadi.MX(2))

        # negate
        self.assertEqual((-b).to_casadi(), casadi.MX(-1))
        # absolute value
        self.assertEqual(abs(c).to_casadi(), casadi.MX(1))

        # function
        def sin(x):
            return np.sin(x)

        f = pybamm.Function(sin, b)
        self.assertEqual(f.to_casadi(), casadi.MX(np.sin(1)))

        def myfunction(x, y):
            return x + y

        f = pybamm.Function(myfunction, b, d)
        self.assertEqual(f.to_casadi(), casadi.MX(3))

        # use classes to avoid simplification
        # addition
        self.assertEqual((pybamm.Addition(a, b)).to_casadi(), casadi.MX(1))
        # subtraction
        self.assertEqual(pybamm.Subtraction(c, d).to_casadi(), casadi.MX(-3))
        # multiplication
        self.assertEqual(
            pybamm.Multiplication(c, d).to_casadi(), casadi.MX(-2))
        # power
        self.assertEqual(pybamm.Power(c, d).to_casadi(), casadi.MX(1))
        # division
        self.assertEqual(pybamm.Division(b, d).to_casadi(), casadi.MX(1 / 2))

        # minimum and maximum
        self.assertEqual(pybamm.Minimum(a, b).to_casadi(), casadi.MX(0))
        self.assertEqual(pybamm.Maximum(a, b).to_casadi(), casadi.MX(1))
Esempio n. 4
0
 def __rmul__(self, other):
     """return a :class:`Multiplication` object"""
     return pybamm.simplify_if_constant(pybamm.Multiplication(other, self),
                                        keep_domains=True)
Esempio n. 5
0
 def __rmul__(self, other):
     """return a :class:`Multiplication` object"""
     if isinstance(other, (Symbol, numbers.Number)):
         return pybamm.Multiplication(other, self)
     else:
         raise NotImplementedError
Esempio n. 6
0
def simplified_multiplication(left, right):
    left, right = simplify_elementwise_binary_broadcasts(left, right)

    # Check for Concatenations and Broadcasts
    out = simplified_binary_broadcast_concatenation(left, right,
                                                    simplified_multiplication)
    if out is not None:
        return out

    # simplify multiply by scalar zero, being careful about shape
    if pybamm.is_scalar_zero(left):
        return pybamm.zeros_like(right)
    if pybamm.is_scalar_zero(right):
        return pybamm.zeros_like(left)

    # if one of the children is a zero matrix, we have to be careful about shapes
    if pybamm.is_matrix_zero(left) or pybamm.is_matrix_zero(right):
        return pybamm.zeros_like(pybamm.Multiplication(left, right))

    # anything multiplied by a scalar one returns itself
    if pybamm.is_scalar_one(left):
        return right
    if pybamm.is_scalar_one(right):
        return left

    # anything multiplied by a scalar negative one returns negative itself
    if pybamm.is_scalar_minus_one(left):
        return -right
    if pybamm.is_scalar_minus_one(right):
        return -left

    # anything multiplied by a matrix one returns itself if
    # - the shapes are the same
    # - both left and right evaluate on edges, or both evaluate on nodes, in all
    # dimensions
    # (and possibly more generally, but not implemented here)
    try:
        if left.shape_for_testing == right.shape_for_testing and all(
                left.evaluates_on_edges(dim) == right.evaluates_on_edges(dim)
                for dim in ["primary", "secondary", "tertiary"]):
            if pybamm.is_matrix_one(left):
                return right
            elif pybamm.is_matrix_one(right):
                return left
            # also check for negative one
            if pybamm.is_matrix_minus_one(left):
                return -right
            elif pybamm.is_matrix_minus_one(right):
                return -left

    except NotImplementedError:
        pass

    # Return constant if both sides are constant
    if left.is_constant() and right.is_constant():
        return pybamm.simplify_if_constant(pybamm.Multiplication(left, right))

    # Simplify (B @ c) * a to (a * B) @ c if (a * B) is constant
    # This is a common construction that appears from discretisation of spatial
    # operators
    if (isinstance(left, MatrixMultiplication) and left.left.is_constant()
            and right.is_constant()
            and not (right.ndim_for_testing == 2
                     and right.shape_for_testing[1] > 1)):
        l_left, l_right = left.orphans
        new_left = right * l_left
        # Special hack for the case where l_left is a matrix one
        # because of weird domain errors otherwise
        if new_left == right and isinstance(right, pybamm.Array):
            new_left = right.new_copy()
        # be careful about domains to avoid weird errors
        new_left.clear_domains()
        new_mul = new_left @ l_right
        # Keep the domain of the old left
        new_mul.copy_domains(left)
        return new_mul

    elif isinstance(left, Multiplication) and right.is_constant():
        # Simplify (a * b) * c to (a * c) * b if (a * c) is constant
        if left.left.is_constant():
            l_left, l_right = left.orphans
            new_left = l_left * right
            return new_left * l_right
        # Simplify (a * b) * c to a * (b * c) if (b * c) is constant
        elif left.right.is_constant():
            l_left, l_right = left.orphans
            new_right = l_right * right
            return l_left * new_right
    elif isinstance(left, Division) and right.is_constant():
        # Simplify (a / b) * c to a * (c / b) if (c / b) is constant
        if left.right.is_constant():
            l_left, l_right = left.orphans
            new_right = right / l_right
            return l_left * new_right

    # Simplify a * (B @ c) to (a * B) @ c if (a * B) is constant
    if (isinstance(right, MatrixMultiplication) and right.left.is_constant()
            and left.is_constant()
            and not (left.ndim_for_testing == 2
                     and left.shape_for_testing[1] > 1)):
        r_left, r_right = right.orphans
        new_left = left * r_left
        # Special hack for the case where r_left is a matrix one
        # because of weird domain errors otherwise
        if new_left == left and isinstance(left, pybamm.Array):
            new_left = left.new_copy()
        # be careful about domains to avoid weird errors
        new_left.clear_domains()
        new_mul = new_left @ r_right
        # Keep the domain of the old right
        new_mul.copy_domains(right)
        return new_mul

    elif isinstance(right, Multiplication) and left.is_constant():
        # Simplify a * (b * c) to (a * b) * c if (a * b) is constant
        if right.left.is_constant():
            r_left, r_right = right.orphans
            new_left = left * r_left
            return new_left * r_right
        # Simplify a * (b * c) to (a * c) * b if (a * c) is constant
        elif right.right.is_constant():
            r_left, r_right = right.orphans
            new_left = left * r_right
            return new_left * r_left
    elif isinstance(right, Division) and left.is_constant():
        # Simplify a * (b / c) to (a / c) * b if (a / c) is constant
        if right.right.is_constant():
            r_left, r_right = right.orphans
            new_left = left / r_right
            return new_left * r_left

    # Simplify a * (b + c) to (a * b) + (a * c) if (a * b) or (a * c) is constant
    # This is a common construction that appears from discretisation of spatial
    # operators
    # Also do this for cases like a * (b @ c + d) where (a * b) is constant
    elif isinstance(right, Addition):
        mul_classes = (
            pybamm.Multiplication,
            pybamm.MatrixMultiplication,
            pybamm.Division,
        )
        if (right.left.is_constant() or right.right.is_constant()
                or (isinstance(right.left, mul_classes)
                    and right.left.left.is_constant())
                or (isinstance(right.right, mul_classes)
                    and right.right.left.is_constant())):
            r_left, r_right = right.orphans
            if (r_left.domain == right.domain
                    or r_left.domain == []) and (r_right.domain == right.domain
                                                 or r_right.domain == []):
                return (left * r_left) + (left * r_right)

    # Negation simplifications
    if isinstance(left, pybamm.Negate) and right.is_constant():
        # Simplify (-a) * b to a * (-b) if (-b) is constant
        return left.orphans[0] * (-right)
    elif isinstance(right, pybamm.Negate) and left.is_constant():
        # Simplify a * (-b) to (-a) * b if (-a) is constant
        return (-left) * right.orphans[0]

    return pybamm.Multiplication(left, right)