Esempio n. 1
0
def test_sampling_with_rejection():
    """
    Tests sampling a serial graph with rejection and evidence set.
    :return: None.
    """
    a = BbnNode(Variable(0, 'a', ['on', 'off']), [0.5, 0.5])
    b = BbnNode(Variable(1, 'b', ['on', 'off']), [0.5, 0.5, 0.4, 0.6])
    c = BbnNode(Variable(2, 'c', ['on', 'off']), [0.7, 0.3, 0.2, 0.8])

    bbn = Bbn() \
        .add_node(a) \
        .add_node(b) \
        .add_node(c) \
        .add_edge(Edge(a, b, EdgeType.DIRECTED)) \
        .add_edge(Edge(b, c, EdgeType.DIRECTED))

    sampler = LogicSampler(bbn)

    n_samples = 10000
    samples = pd.DataFrame(
        sampler.get_samples(evidence={0: 'on'}, n_samples=n_samples, seed=37))
    samples.columns = ['a', 'b', 'c']

    assert n_samples == samples.shape[0]
    assert 3 == samples.shape[1]

    s_a = samples.a.value_counts()
    s_b = samples.b.value_counts()
    s_c = samples.c.value_counts()

    s_a = s_a / s_a.sum()
    s_b = s_b / s_b.sum()
    s_c = s_c / s_c.sum()

    s_a = s_a.sort_index().values
    s_b = s_b.sort_index().values
    s_c = s_c.sort_index().values

    assert_almost_equal(s_a, np.array([1.0]))
    assert_almost_equal(s_b, np.array([0.5006, 0.4994]))
    assert_almost_equal(s_c, np.array([0.5521, 0.4479]))

    join_tree = InferenceController.apply(bbn)
    ev = EvidenceBuilder() \
        .with_node(join_tree.get_bbn_node_by_name('a')) \
        .with_evidence('on', 1.0) \
        .build()
    join_tree.set_observation(ev)
    posteriors = join_tree.get_posteriors()

    assert_almost_equal(s_a, np.array([posteriors['a']['on']]), decimal=1)
    assert_almost_equal(s_b,
                        np.array(
                            [posteriors['b']['off'], posteriors['b']['on']]),
                        decimal=1)
    assert_almost_equal(s_c,
                        np.array(
                            [posteriors['c']['off'], posteriors['c']['on']]),
                        decimal=1)
Esempio n. 2
0
def test_huang_inference_with_multiple_evidence():
    """
    Tests inference on the Huang graph with a multiple evidence.
    :return: None.
    """
    bbn = BbnUtil.get_huang_graph()

    join_tree = InferenceController.apply(bbn)

    expected = {
        'a': [0.5, 0.5],
        'b': [0.45, 0.55],
        'c': [0.45, 0.55],
        'd': [0.68, 0.32],
        'e': [0.465, 0.535],
        'f': [0.176, 0.824],
        'g': [0.415, 0.585],
        'h': [0.823, 0.177]
    }

    __validate_posterior__(expected, join_tree)

    ev1 = EvidenceBuilder() \
        .with_node(join_tree.get_bbn_node_by_name('a')) \
        .with_evidence('on', 1.0) \
        .build()
    ev2 = EvidenceBuilder() \
        .with_node(join_tree.get_bbn_node_by_name('f')) \
        .with_evidence('on', 1.0) \
        .build()

    join_tree.unobserve_all()
    join_tree.update_evidences([ev1, ev2])

    expected = {
        'a': [1.0, 0.0],
        'b': [0.184, 0.816],
        'c': [0.798, 0.202],
        'd': [0.0370, 0.963],
        'e': [0.0206, 0.979],
        'f': [1.0, 0.0],
        'g': [0.658, 0.342],
        'h': [0.941, 0.0588]
    }

    __validate_posterior__(expected, join_tree)
Esempio n. 3
0
def sure_val_func():
    global sure_node
    global sure_val

    try:

        sure_val = input("What is the current value of node %s: " % sure_node)

        # insert an observation evidence
        ev = EvidenceBuilder()
        ev = ev.with_node(join_tree.get_bbn_node_by_name(str(sure_node)))
        ev = ev.with_evidence(str(sure_val), 1.0)
        ev = ev.build()
        join_tree.set_observation(ev)

        # print the marginal probabilities

    except:
        print("Node value is not correct.")
        sure_val_func()
Esempio n. 4
0
def test_inference_controller():
    bbn = BbnUtil.get_huang_graph()
    join_tree = InferenceController.apply(bbn)

    print('INIT')
    print_potentials(join_tree)

    ev = EvidenceBuilder()\
        .with_node(join_tree.get_bbn_node(0))\
        .with_evidence('on', 1.0)\
        .build()

    join_tree.set_observation(ev)

    print('FIRST')
    print_potentials(join_tree)
Esempio n. 5
0
def test_huang_inference_with_single_evidence():
    """
    Tests inference on the Huang graph with a single evidence.
    :return: None.
    """
    bbn = BbnUtil.get_huang_graph()

    join_tree = InferenceController.apply(bbn)

    expected = {
        'a': [0.5, 0.5],
        'b': [0.45, 0.55],
        'c': [0.45, 0.55],
        'd': [0.68, 0.32],
        'e': [0.465, 0.535],
        'f': [0.176, 0.824],
        'g': [0.415, 0.585],
        'h': [0.823, 0.177]
    }

    __validate_posterior__(expected, join_tree)

    ev = EvidenceBuilder() \
        .with_node(join_tree.get_bbn_node_by_name('a')) \
        .with_evidence('on', 1.0) \
        .build()
    join_tree.unobserve_all()
    join_tree.set_observation(ev)

    expected = {
        'a': [1.0, 0.0],
        'b': [0.5, 0.5],
        'c': [0.7, 0.3],
        'd': [0.7, 0.3],
        'e': [0.39, 0.61],
        'f': [0.18934, 0.81066],
        'g': [0.59, 0.41],
        'h': [0.7826, 0.2174]
    }

    __validate_posterior__(expected, join_tree)
Esempio n. 6
0
def get_stock_pct_chg(tscode):
    a = get_stock_info(tscode)
    ev = EvidenceBuilder() \
        .with_node(join_tree.get_bbn_node_by_name('income')) \
        .with_evidence(str(int(a["income_sort"])), 1.0) \
        .with_node(join_tree.get_bbn_node_by_name('forecast')) \
        .with_evidence(str(int(a["forecast_sort"])), 1.0) \
        .with_node(join_tree.get_bbn_node_by_name('express')) \
        .with_evidence(str(int(a["express_sort"])), 1.0) \
        .with_node(join_tree.get_bbn_node_by_name('fina_indicator')) \
        .with_evidence(str(int(a["fina_indicator_sort"])), 1.0) \
        .with_node(join_tree.get_bbn_node_by_name('cashflow')) \
        .with_evidence(str(int(a["cashflow_sort"])), 1.0) \
        .with_node(join_tree.get_bbn_node_by_name('transaction')) \
        .with_evidence(str(int(a["transaction_sort"])), 1.0) \
        .with_node(join_tree.get_bbn_node_by_name('balancesheet')) \
        .with_evidence(str(int(a["balancesheet_sort"])), 1.0) \
        .build()
    join_tree.set_observation(ev)
    
    for node in join_tree.get_bbn_nodes():
        potential = join_tree.get_bbn_potential(node)
        print(node)
        print(potential)
Esempio n. 7
0
        .add_edge(Edge(sir, wbc, EdgeType.DIRECTED))
    options = {
        "font_size": 16,
        "node_size": 3000,
        "node_color": "white",
        "edgecolors": "black",
        "edge_color": "red",
        "linewidths": 5,
        "width": 5,
    }

    n, d = bbn.to_nx_graph()
    nx.draw(n, with_labels=True, labels=d, **options)
    join_tree = InferenceController.apply(bbn)
    ev = EvidenceBuilder() \
        .with_node(join_tree.get_bbn_node_by_name('ap')) \
        .with_evidence('yes', 1) \
        .build()

    ev2 = EvidenceBuilder() \
        .with_node(join_tree.get_bbn_node_by_name('p')) \
        .with_evidence('yes', 1) \
        .build()

    ev3 = EvidenceBuilder() \
        .with_node(join_tree.get_bbn_node_by_name('wbc')) \
        .with_evidence('high', 1) \
        .build()

    join_tree.set_observation(ev)
    join_tree.set_observation(ev2)
    join_tree.set_observation(ev3)
Esempio n. 8
0
    .add_node(c) \
    .add_node(d) \
    .add_node(e) \
    .add_node(f) \
    .add_node(g) \
    .add_node(h) \
    .add_edge(Edge(a, b, EdgeType.DIRECTED)) \
    .add_edge(Edge(a, c, EdgeType.DIRECTED)) \
    .add_edge(Edge(b, d, EdgeType.DIRECTED)) \
    .add_edge(Edge(c, e, EdgeType.DIRECTED)) \
    .add_edge(Edge(d, f, EdgeType.DIRECTED)) \
    .add_edge(Edge(e, f, EdgeType.DIRECTED)) \
    .add_edge(Edge(c, g, EdgeType.DIRECTED)) \
    .add_edge(Edge(e, h, EdgeType.DIRECTED)) \
    .add_edge(Edge(g, h, EdgeType.DIRECTED))

# convert the BBN to a join tree
join_tree = InferenceController.apply(bbn)

# insert an observation evidence
ev = EvidenceBuilder() \
    .with_node(join_tree.get_bbn_node_by_name('a')) \
    .with_evidence('on', 1.0) \
    .build()
join_tree.set_observation(ev)

# print the posterior probabilities
for node, posteriors in join_tree.get_posteriors().items():
    p = ', '.join([f'{val}={prob:.5f}' for val, prob in posteriors.items()])
    print(f'{node} : {p}')
Esempio n. 9
0
if __name__ == '__main__':
    args = parse_args(sys.argv[1:])
    bbn, jt = get_bbn(args.file)

    while True:
        value = input(f'command ')
        if value == 'q':
            break
        elif value == 'p':
            posteriors = jt.get_posteriors()
            for name, d in posteriors.items():
                s = name + ' ' + ' '.join([f'{k}={v:.5f}' for k, v in d.items()])
                print(s)
        elif value == 'c':
            jt.unobserve_all()
        else:
            name, val = value.split('=')

            ev = EvidenceBuilder() \
                .with_node(jt.get_bbn_node_by_name(name)) \
                .with_evidence(val, 1.0) \
                .build()

            start = time.time()
            jt.set_observation(ev)
            stop = time.time()
            diff = stop - start
            print(f'{diff:.5f} : inference time')
    print('finished')
Esempio n. 10
0
bbn = BbnUtil.get_huang_graph()
# PotentialInitializer.init(bbn)
#
# ug = Moralizer.moralize(bbn)
# cliques = Triangulator.triangulate(ug)
#
# join_tree = Transformer.transform(cliques)
#
# Initializer.initialize(join_tree)
# Propagator.propagate(join_tree)
#
# join_tree.set_listener(InferenceController())

join_tree = InferenceController.apply(bbn)

ev = EvidenceBuilder().with_node(
    join_tree.get_bbn_node_by_name('a')).with_evidence('on', 1.0).build()
join_tree.set_observation(ev)
join_tree.set_observation(ev)

ev2 = EvidenceBuilder().with_node(
    join_tree.get_bbn_node_by_name('a')).with_evidence('on', 1.0).build()
ev3 = EvidenceBuilder().with_node(
    join_tree.get_bbn_node_by_name('f')).with_evidence('on', 1.0).build()
join_tree.update_evidences([ev2, ev3])
# for k, v in join_tree.potentials.items():
#     clique = join_tree.get_node(k)
#     potential = v
#     print(clique)
#     print(potential)

for node in join_tree.get_bbn_nodes():
Esempio n. 11
0
def test_inference_libpgm():
    """
    Tests inference with evidence on libpgm graph.
    :return: None.
    """
    difficulty = BbnNode(Variable(0, 'difficulty', ['easy', 'hard']),
                         [0.6, 0.4])
    intelligence = BbnNode(Variable(1, 'intelligence', ['low', 'high']),
                           [0.7, 0.3])
    grade = BbnNode(
        Variable(2, 'grade', ['a', 'b', 'c']),
        [0.3, 0.4, 0.3, 0.9, 0.08, 0.02, 0.05, 0.25, 0.7, 0.5, 0.3, 0.2])
    sat = BbnNode(Variable(3, 'sat', ['low', 'high']), [0.95, 0.05, 0.2, 0.8])
    letter = BbnNode(Variable(4, 'letter', ['weak', 'strong']),
                     [0.1, 0.9, 0.4, 0.6, 0.99, 0.01])

    bbn = Bbn() \
        .add_node(difficulty) \
        .add_node(intelligence) \
        .add_node(grade) \
        .add_node(sat) \
        .add_node(letter) \
        .add_edge(Edge(difficulty, grade, EdgeType.DIRECTED)) \
        .add_edge(Edge(intelligence, grade, EdgeType.DIRECTED)) \
        .add_edge(Edge(intelligence, sat, EdgeType.DIRECTED)) \
        .add_edge(Edge(grade, letter, EdgeType.DIRECTED))

    join_tree = InferenceController.apply(bbn)

    __validate_posterior__(
        {
            'difficulty': [0.6, 0.4],
            'intelligence': [0.7, 0.3],
            'grade': [0.362, 0.288, 0.350],
            'sat': [0.725, 0.275],
            'letter': [0.498, 0.502]
        }, join_tree)

    ev = EvidenceBuilder() \
        .with_node(join_tree.get_bbn_node_by_name('sat')) \
        .with_evidence('high', 1.0) \
        .build()
    join_tree.unobserve_all()
    join_tree.set_observation(ev)

    __validate_posterior__(
        {
            'difficulty': [0.6, 0.4],
            'intelligence': [0.127, 0.873],
            'grade': [0.671, 0.190, 0.139],
            'sat': [0.0, 1.0],
            'letter': [0.281, 0.719]
        }, join_tree)

    ev = EvidenceBuilder() \
        .with_node(join_tree.get_bbn_node_by_name('sat')) \
        .with_evidence('low', 1.0) \
        .build()
    join_tree.unobserve_all()
    join_tree.set_observation(ev)

    __validate_posterior__(
        {
            'difficulty': [0.6, 0.4],
            'intelligence': [0.917, 0.0828],
            'grade': [0.245, 0.326, 0.430],
            'sat': [1.0, 0.0],
            'letter': [0.58, 0.42]
        }, join_tree)
Esempio n. 12
0
 def get_evidence(n, v):
     return EvidenceBuilder() \
         .with_node(self.jt.get_bbn_node_by_name(n)) \
         .with_evidence(v, 1.0) \
         .build()
Esempio n. 13
0
    .add_edge(Edge(season, rain, EdgeType.DIRECTED)) \
    .add_edge(Edge(atmos_pres, rain, EdgeType.DIRECTED)) \
    .add_edge(Edge(rain, grass, EdgeType.DIRECTED)) \
    .add_edge(Edge(rain, umbrellas, EdgeType.DIRECTED)) \
    .add_edge(Edge(rain, dog_bark, EdgeType.DIRECTED)) \
    .add_edge(Edge(rain, cat_mood, EdgeType.DIRECTED)) \
    .add_edge(Edge(dog_bark, cat_hide, EdgeType.DIRECTED)) \
    .add_edge(Edge(cat_mood, cat_hide, EdgeType.DIRECTED))

# new cell

join_tree = InferenceController.apply(bbn)

# insert an observation evidence
ev = EvidenceBuilder() \
    .with_node(join_tree.get_bbn_node_by_name('season')) \
    .with_evidence('winter', 1.0) \
    .build()

join_tree.set_observation(ev)

# print the marginal probabilities
for node in join_tree.get_bbn_nodes():
    potential = join_tree.get_bbn_potential(node)
    print(node)
    print(potential)
    print('--------------------->')

# new cell

join_tree = InferenceController.apply(bbn)
#     '''(graph, prog='neato')'''
#     plt.figure(figsize=(20, 10))
#     plt.subplot(121)
#     labels = dict([(k, node.variable.name) for k, node in bbn.nodes.items()])
#     nx.draw(graph, pos=pos, with_labels=True, labels=labels)
#     plt.title('BBN DAG')




# convert the BBN to a join tree
join_tree = InferenceController.apply(bbn)

# insert an observation evidence
ev = EvidenceBuilder() \
    .with_node(join_tree.get_bbn_node_by_name('PastCall')) \
    .with_evidence('0-4', 1) \
    .build()
join_tree.set_observation(ev)

# print the marginal probabilities
for node in join_tree.get_bbn_nodes():
    potential = join_tree.get_bbn_potential(node)
    print(node)
    print(potential)






def bayesian_belief_network():

    deadline = BbnNode(Variable(0, 'deadline', ['long', 'medium', 'short']),
                       [0.33, 0.33, 0.33])
    goal = BbnNode(Variable(1, 'goal', ['large', 'medium', 'small']),
                   [0.33, 0.33, 0.33])
    backers = BbnNode(Variable(3, 'backers', ['many', 'medium', 'few']),
                      [0.6, 0.3, 0.2, 0.3, 0.4, 0.4, 0.1, 0.3, 0.4])
    pledges = BbnNode(Variable(4, 'pledges', ['large', 'medium', 'small']),
                      [0.6, 0.3, 0.1, 0.2, 0.5, 0.2, 0.2, 0.2, 0.7])
    state = BbnNode(Variable(5, 'state', ['success', 'fail']), [
        0.7, 0.5, 0.2, 0.8, 0.6, 0.2, 0.9, 0.7, 0.3, 0.3, 0.5, 0.8, 0.2, 0.4,
        0.8, 0.1, 0.3, 0.7
    ])

    global Bbn
    Bbn = Bbn() \
    .add_node(deadline) \
    .add_node(goal) \
    .add_node(backers) \
    .add_node(pledges) \
    .add_node(state) \
    .add_edge(Edge( goal, backers, EdgeType.DIRECTED)) \
    .add_edge(Edge( goal, pledges, EdgeType.DIRECTED)) \
    .add_edge(Edge( backers, state, EdgeType.DIRECTED)) \
    .add_edge(Edge( deadline, state, EdgeType.DIRECTED))

    with warnings.catch_warnings():
        warnings.simplefilter('ignore')

        graph = convert_for_drawing(Bbn)
        pos = nx.nx_agraph.graphviz_layout(graph, prog='dot')

        #uncomment this section to print BBN
        #plt.figure(figsize=(8, 8))
        #plt.subplot(121)
        #labels = dict([(k, node.variable.name) for k, node in Bbn.nodes.items()])
        #nx.draw(graph, pos=pos, with_labels=True, labels=labels)
        #plt.title('Bayesian Belief Network Diagram')
        #plt.show()

    join_tree = InferenceController.apply(Bbn)

    print("BBN - Original Probabilities")
    for node in join_tree.get_bbn_nodes():
        potential = join_tree.get_bbn_potential(node)
        print(node)
        print(potential)
        print('--------------------->')

    # insert an observation evidence
    ev = EvidenceBuilder() \
        .with_node(join_tree.get_bbn_node_by_name('goal')) \
        .with_evidence('large', 1.0) \
        .build()
    join_tree.set_observation(ev)
    #print the marginal probabilities

    print()
    print()
    print("BBN - Set Goal = Large")
    for node in join_tree.get_bbn_nodes():
        potential = join_tree.get_bbn_potential(node)
        print(node)
        print(potential)
        print('--------------------->')