Esempio n. 1
0
def plot_i_tool(i, method, **kwargs):
    a = pybedtools.BedTool(i)
    result = getattr(a, method)(**kwargs)
    fig = plt.figure(figsize=(8, 2))
    ax = fig.add_subplot(111)
    res_track = plotting.Track(result, color='r', alpha=0.5, ybase=0, visibility='squish')
    a_track = plotting.Track(a, color='b', alpha=0.5, ybase=1.1, visibility='squish')
    ax.add_collection(res_track)
    ax.add_collection(a_track)
    ax.set_yticks([res_track.midpoint, a_track.midpoint])
    ax.set_yticklabels(['result', os.path.basename(a.fn)])
    ax.axis('tight')
    ax.set_title(' '.join([os.path.basename(k) for k in result._cmds]))
    fig.subplots_adjust(top=0.8, bottom=0.15)
    return ax
Esempio n. 2
0
def plot_a_b_tool(a, b, method, **kwargs):
    """
    Use for BEDTools programs that use -a and -b input arguments.  Filenames
    `a` and `b` are used for `method` of the BedTool class, and `kwargs` are
    sent to that method.

    The result is a plot of `a`, `b`, and the result, with the commandline
    argument as the plot title.
    """
    a = pybedtools.BedTool(a)
    b = pybedtools.BedTool(b)
    kwargs["b"] = b
    result = getattr(a, method)(**kwargs)

    fig = plt.figure(figsize=(8, 2))
    ax = fig.add_subplot(111)
    ybase = 0
    yheight = 1
    ylabels = []
    yticks = []
    for color, bt, label in zip(
            colors,
        [result, b, a],
        ["result", os.path.basename(b.fn),
         os.path.basename(a.fn)],
    ):
        ylabels.append(label)
        track = plotting.Track(bt,
                               visibility="squish",
                               alpha=0.5,
                               ybase=ybase,
                               color=color)
        yticks.append(track.midpoint)
        ybase = track.ymax + 0.1
        ax.add_collection(track)
    ax.set_yticklabels(ylabels)
    ax.set_yticks(yticks)
    ax.set_title(" ".join([os.path.basename(i) for i in result._cmds]))
    ax.axis("tight")
    fig.subplots_adjust(top=0.8, bottom=0.15)
    return ax
Esempio n. 3
0
def plot_bedtool(filea, fileb=None, method=None, **kwargs):
    """
    Use for BEDTools programs that use -a and -b input arguments.  Filenames
    `a` and `b` are used for `method` of the BedTool class, and `kwargs` are
    sent to that method.

    The result is a plot of `a`, `b`, and the result, with the commandline
    argument as the plot title.
    """
    a = pybedtools.BedTool(filea)
    if fileb is not None:
        b = pybedtools.BedTool(fileb)
        kwargs['b'] = fileb
        result = getattr(a, method)(**kwargs)
        bfn = b.fn
        bts = [result, b, a]
        labels = ['result', os.path.basename(b.fn), os.path.basename(a.fn)]
    else:
        result = getattr(a, method)(**kwargs)
        bfn = None
        bts = [result, a]
        labels = ['result', os.path.basename(a.fn)]

    fig = plt.figure(figsize=(8, 3))
    ax = fig.add_subplot(111)
    ybase = 0
    yheight = 1
    ylabels = []
    yticks = []
    pad = 0.4
    any_stranded = sum(sum(j.strand != '.' for j in i) for i in bts)
    for color, bt, label in zip(colors, bts, labels):
        if bt is None:
            continue
        ax.axhline(ybase, color='k', zorder=100)
        ybase += pad

        if any_stranded:
            strands = ['+', '-', '.']
            strand_labels = {
                '+': '(+)',
                '-': '(-)',
                '.': '( )',
            }
        else:
            strands = ['.']
            strand_labels = {'.': ''}
        for strand in strands:
            sbt = bt.filter(lambda x: x.strand == strand)
            ylabels.append(label + ' ' + strand_labels[strand])
            track = plotting.Track(
                    sbt, visibility='squish', alpha=0.5, ybase=ybase, color=color, stranded=False)
            yticks.append(track.midpoint)
            ybase = track.ymax + pad
            ax.axhline(ybase, color='0.7', linewidth=0.3)
            if strand != '.':
                ybase += pad
            ax.add_collection(track)
    ax.axhline(ybase, color='k', zorder=100)
    ax.set_yticklabels(ylabels, fontdict=dict(name='Monospace'))
    ax.set_yticks(yticks)

    cmds = result._cmds
    cmds[0] = 'bedtools ' + pybedtools.settings._prog_names[cmds[0]]
    cleaned_cmds = fix_args(cmds)
    ax.set_title(cleaned_cmds, fontdict=dict(name='Monospace'))
    ax.axis('tight')
    fig.subplots_adjust(top=0.8, bottom=0.15)
    sns.despine(ax=ax, left=True, right=True, top=True)
    plt.tick_params(axis='y', which='both', left='off')
    ax.axis(ymin=0)
    return ax, cleaned_cmds
Esempio n. 4
0
    b = pybedtools.example_filename('b.bed')

    plot_a_b_tool(a, b, 'intersect', u=True)
    plot_a_b_tool(a, b, 'intersect')
    plot_a_b_tool(a, b, 'subtract')

    plot_i_tool(a, 'merge')

    # Check performance -- should be <2s for 15k features
    t0 = time.time()
    fig = plt.figure(figsize=(8, 2))
    ax = fig.add_subplot(111)
    big = pybedtools.example_bedtool('dm3-chr2L-5M.gff.gz')
    gene_track = plotting.Track(big.filter(lambda x: x[2] == 'gene'),
                                color='k',
                                visibility='squish',
                                alpha=0.5,
                                label='genes')
    exon_track = plotting.Track(big.filter(lambda x: x[2] == 'exon'),
                                color='r',
                                visibility='squish',
                                alpha=0.5,
                                ybase=gene_track.ymax,
                                label='exons')
    ax.add_collection(gene_track)
    ax.add_collection(exon_track)

    ax.legend(loc='best')
    ax.axis('tight')

    print '%.2fs' % (time.time() - t0)
Esempio n. 5
0
    plot_a_b_tool(a, b, "intersect", u=True)
    plot_a_b_tool(a, b, "intersect")
    plot_a_b_tool(a, b, "subtract")

    plot_i_tool(a, "merge")

    # Check performance -- should be <2s for 15k features
    t0 = time.time()
    fig = plt.figure(figsize=(8, 2))
    ax = fig.add_subplot(111)
    big = pybedtools.example_bedtool("dm3-chr2L-5M.gff.gz")
    gene_track = plotting.Track(
        big.filter(lambda x: x[2] == "gene"),
        color="k",
        visibility="squish",
        alpha=0.5,
        label="genes",
    )
    exon_track = plotting.Track(
        big.filter(lambda x: x[2] == "exon"),
        color="r",
        visibility="squish",
        alpha=0.5,
        ybase=gene_track.ymax,
        label="exons",
    )
    ax.add_collection(gene_track)
    ax.add_collection(exon_track)

    ax.legend(loc="best")