def test_Net3DArabidopsisOvules_forward(cache_path):
    spec_path = (
        Path(__file__).parent /
        "../../bioimage-io/UNet3DArabidopsisOvules.model/UNet3DArabidopsisOvules.model.yaml"
    ).resolve()
    assert spec_path.exists(), spec_path
    pybio_model = load_model(str(spec_path), cache_path=cache_path)
    assert pybio_model.spec.outputs[0].shape.reference_input == "raw"
    assert pybio_model.spec.outputs[0].shape.scale == (1, 1, 1, 1, 1)
    assert pybio_model.spec.outputs[0].shape.offset == (0, 0, 0, 0, 0)

    assert isinstance(pybio_model.spec.prediction.weights.source, BytesIO)
    assert pybio_model.spec.test_input is not None
    assert pybio_model.spec.test_input.suffix == ".npy", pybio_model.spec.test_input.suffix
    assert pybio_model.spec.test_output is not None
    assert pybio_model.spec.test_output.suffix == ".npy", pybio_model.spec.test_output.suffix

    model: torch.nn.Module = get_instance(pybio_model)
    assert isinstance(model, UNet3D)
    assert hasattr(model, "forward")
    model_weights = torch.load(pybio_model.spec.prediction.weights.source,
                               map_location=torch.device("cpu"))
    model.load_state_dict(model_weights)
    pre_transformations = [
        get_instance(trf) for trf in pybio_model.spec.prediction.preprocess
    ]
    post_transformations = [
        get_instance(trf) for trf in pybio_model.spec.prediction.postprocess
    ]

    ipt = numpy.load(str(pybio_model.spec.test_input))
    assert len(ipt.shape) == 5
    assert ipt.shape == pybio_model.spec.inputs[0].shape

    expected = numpy.load(str(pybio_model.spec.test_output))
    assert pybio_model.spec.outputs[
        0].shape.reference_input == pybio_model.spec.inputs[0].name
    assert all([s == 1 for s in pybio_model.spec.outputs[0].shape.scale])
    assert all([off == 0 for off in pybio_model.spec.outputs[0].shape.offset])
    assert expected.shape == pybio_model.spec.inputs[0].shape

    test_roi = (slice(0, 1), slice(0, 1), slice(0, 32), slice(0, 32),
                slice(0, 32))  # to lower test mem consumption
    ipt = ipt[test_roi]
    expected = expected[test_roi]
    ipt = apply_transformations(pre_transformations, ipt)
    assert isinstance(ipt, list)
    assert len(ipt) == 1
    ipt = ipt[0]
    out = model.forward(ipt)
    out = apply_transformations(post_transformations, out)
    assert isinstance(out, list)
    assert len(out) == 1
    out = out[0]
    # assert out.shape == pybio_model.spec.inputs[0].shape  # test_roi makes test invalid
    numpy.save("out.npy", out)
    assert str(
        out.dtype).split(".")[-1] == pybio_model.spec.outputs[0].data_type
    assert numpy.allclose(expected, out,
                          atol=0.1)  # test_roi requires bigger atol
Esempio n. 2
0
def test_forward(cache_path):
    spec_path = (
        Path(__file__).parent /
        "../../segmentation/cells/UNet3DPlatyCellProbs.model/UNet3DPlatyCellProbs.model.yaml"
    )
    assert spec_path.exists(), spec_path.absolute()

    pybio_model = load_model(str(spec_path), cache_path=cache_path)
    assert pybio_model.spec.outputs[0].shape.reference_input == "raw"
    assert pybio_model.spec.outputs[0].shape.scale == (1, 1, 1, 1, 1)
    assert pybio_model.spec.outputs[0].shape.offset == (0, 0, 0, 0, 0)

    model: torch.nn.Module = get_instance(pybio_model)
    assert hasattr(model, "forward")
    assert isinstance(model, UNetAnisotropic)
    model_weights = torch.load(pybio_model.spec.prediction.weights.source,
                               map_location=torch.device("cpu"))
    model.load_state_dict(model_weights)
    pre_transformations = [
        get_instance(trf) for trf in pybio_model.spec.prediction.preprocess
    ]
    post_transformations = [
        get_instance(trf) for trf in pybio_model.spec.prediction.postprocess
    ]
    ipt_npz = numpy.load(str(pybio_model.spec.test_input))
    # npz to ndarray
    ipt = [ipt_npz[ipt_npz.files[0]]]
    ipt_npz.close()
    assert len(ipt) == len(pybio_model.spec.inputs)
    assert isinstance(ipt, list)
    assert len(ipt) == 1
    ipt = ipt[0]
    assert ipt.shape == pybio_model.spec.inputs[0].shape

    # Don't test with the real test io, but a smaller test_roi.
    # Because the results differ due to edge effects, load the small test output instead
    # (this one is not linked to in the model.yaml)
    assert len(ipt.shape) == 5, ipt.shape
    test_roi = (slice(0, 1), slice(0, 1), slice(0, 32), slice(0, 32),
                slice(0, 32))  # to lower test mem consumption
    ipt = ipt[test_roi]
    expected_npz = numpy.load(
        str(pybio_model.spec.test_output).replace("test_output.npz",
                                                  "test_output_small.npz"))
    # npz to npy
    expected = expected_npz[expected_npz.files[0]]
    expected_npz.close()

    ipt = apply_transformations(pre_transformations, ipt)
    assert isinstance(ipt, list)
    assert len(ipt) == 1
    out = model.forward(*ipt)
    out = apply_transformations(post_transformations, out)
    assert isinstance(out, list)
    assert len(out) == 1
    out = out[0]
    # assert out.shape == pybio_model.spec.inputs[0].shape  # test_roi makes this test invalid
    assert str(
        out.dtype).split(".")[-1] == pybio_model.spec.outputs[0].data_type
    assert numpy.allclose(out, expected)
Esempio n. 3
0
def test_UNet2dNucleiBroads_load_weights(cache_path):
    spec_path = (
        Path(__file__).parent /
        "../../../specs/models/unet2d/nuclei_broad/UNet2DNucleiBroad.model.yaml"
    ).resolve()
    assert spec_path.exists(), spec_path
    pybio_model = load_model(str(spec_path), cache_path=cache_path)
    assert isinstance(pybio_model.spec.prediction.weights.source, BytesIO)
Esempio n. 4
0
def test_dummy_input(cache_path, dummy_input):
    spec_path = (
        Path(__file__).parent / "../../bioimage-io/UNet3DArabidopsisOvules.model/UNet3DArabidopsisOvules.model.yaml"
    )
    assert spec_path.exists()

    pybio_model = load_model(str(spec_path), cache_path=cache_path)
    for dummy, spec in zip(dummy_input, pybio_model.spec.inputs):
        assert str(dummy.dtype) == spec.data_type
        assert dummy.shape == spec.shape
def test_RandomForestClassifierBroadNucleusDataBinarized(cache_path):
    spec_path = (
        Path(__file__).parent /
        "../../../specs/models/sklearnbased/RandomForestClassifierBroadNucleusDataBinarized.model.yaml"
    )
    pybio_model = load_model(str(spec_path),
                             kwargs={"c_indices": [None]},
                             cache_path=cache_path)
    model = utils.train(pybio_model)

    ipt = [numpy.arange(24).reshape((2, 3, 4))]
    out = model(ipt)
    assert len(out) == 1
    assert out[0].shape == ipt[0].shape
Esempio n. 6
0
def test_UNet2dNucleiBroads(cache_path):
    spec_path = (
        Path(__file__).parent /
        "../../../specs/models/unet2d/nuclei_broad/UNet2DNucleiBroad.model.yaml"
    ).resolve()
    assert spec_path.exists(), spec_path
    pybio_model = load_model(str(spec_path), cache_path=cache_path)
    with BytesIO() as f:
        model = utils.train(pybio_model, n_iterations=1, out_file=f)
        f.seek(0)
        loaded = torch.load(f)

    state = model.state_dict()
    for t in state:
        assert t in loaded
        assert torch.equal(state[t], loaded[t])
Esempio n. 7
0
def test_2sUNetDA(cache_path):
    spec_path = (Path(__file__).parent / "../2sUNetDA.model.yaml").resolve()
    assert spec_path.exists(), spec_path
    pybio_model = load_model(str(spec_path), cache_path=cache_path)

    assert isinstance(pybio_model.spec.prediction.weights.source, BytesIO)
    assert pybio_model.spec.test_input is not None
    assert pybio_model.spec.test_output is not None

    model: torch.nn.Module = get_instance(pybio_model)
    if torch.cuda.is_available():
        test_device = torch.device("cuda")
        model = model.to(device=test_device)
    else:
        test_device = torch.device("cpu")

    model.eval()

    model_weights = torch.load(pybio_model.spec.prediction.weights.source, map_location=test_device)
    model.load_state_dict(model_weights)
    pre_transformations = [get_instance(trf) for trf in pybio_model.spec.prediction.preprocess]
    post_transformations = [get_instance(trf) for trf in pybio_model.spec.prediction.postprocess]

    test_ipt = numpy.load(str(pybio_model.spec.test_input))
    test_out = numpy.load(str(pybio_model.spec.test_output))

    assert hasattr(model, "forward")
    preprocessed_inputs = apply_transformations(pre_transformations, test_ipt)
    assert isinstance(preprocessed_inputs, list)
    assert len(preprocessed_inputs) == 1
    out = model.forward(*[t.to(test_device) for t in preprocessed_inputs])
    postprocessed_outputs = apply_transformations(post_transformations, out)
    assert isinstance(postprocessed_outputs, list)
    assert len(postprocessed_outputs) == 1
    out = postprocessed_outputs[0]
    assert numpy.allclose(test_out, out)