def optimize(self, num_iter=10):
        if not self.initialised:
            self._init_model(num_initial_evaluations=self.num_initial_evaluations)
        
        logger.info("Optimising %d iterations" % num_iter)
        for _ in range(num_iter):
            index = policies.EI(self.model, self.bounds, self.X)
            xnext, _ = solvers.solve_lbfgs(index, self.bounds)

            # observe and update model
            ynext = self._eval(xnext)
            self.model.add_data(xnext, ynext)
            self.X.append(xnext)
            self.Y.append(ynext)

            # best point so far
            self.xbest = recommenders.best_incumbent(self.model, self.bounds, self.X)
        
        return self._search_domain_to_param_dict(self.xbest)
Esempio n. 2
0
ell = [1.] * len(bounds)  # Lengthscales
mean = 1.  # Mean

model = make_gp(sn2, rho, ell, mean)  # Create GP surrogate
model.add_data(X, Y[:, 1])  # Add data
#model.optimize()           # Optimise hyperparameters
"""
Multi-objective optimisation
"""
exp_iter = 20
for n in range(exp_iter):
    print('Additional experiment {:d}/{:d}'.format(n + 1, exp_iter))
    # Acquisition function
    acqfunc = EHVI(P, r, model, detf)
    # Choose next point to evaluate
    xnext, _ = solvers.solve_lbfgs(acqfunc, bounds)

    # Make 'observation'
    ycnext = func.f1(xnext)  # Deterministic
    yfnext = func.f2(xnext)  # Black-box

    # record data
    X = np.vstack((X, xnext))
    Y = np.vstack((Y, np.array([ycnext, yfnext])))
    P = pareto2d(np.array(Y), maxX=False, maxY=False)

    # Update the model
    model.add_data(xnext, yfnext)
    #model.optimize()

plt.scatter(P[:, 0], P[:, 1], c='b', marker='o')
Esempio n. 3
0
def main():
    """Run the demo."""
    # define the bounds over which we'll optimize, the optimal x for comparison,
    # and a sequence of test points
    bounds = np.array([[-5, 10.], [0, 15]])
    xopt = np.array([np.pi, 2.275])
    x1, x2 = np.meshgrid(np.linspace(*bounds[0], num=100),
                         np.linspace(*bounds[1], num=100))
    xx = np.c_[x1.flatten(), x2.flatten()]

    # get initial data and some test points.
    X = list(inits.init_latin(bounds, 6))
    Y = [f(x_) for x_ in X]
    F = list()

    # initialize the model
    model = make_gp(0.01, 10, [1., 1.], 0)
    model.add_data(X, Y)

    # set a prior on the parameters
    model.params['like.sn2'].set_prior('uniform', 0.005, 0.015)
    model.params['kern.rho'].set_prior('lognormal', 0, 3)
    model.params['kern.ell'].set_prior('lognormal', 0, 3)
    model.params['mean.bias'].set_prior('normal', 0, 20)

    # make a model which samples parameters
    model = MCMC(model, n=10, rng=None)

    # create a new figure
    fig = figure(figsize=(10, 6))

    while True:
        # get index to solve it and plot it
        index = policies.EI(model, bounds, X, xi=0.1)

        # get the recommendation and the next query
        xbest = recommenders.best_incumbent(model, bounds, X)
        xnext, _ = solvers.solve_lbfgs(index, bounds)

        # observe and update model
        ynext = f(xnext)
        model.add_data(xnext, ynext)

        # evaluate the posterior and the acquisition function
        mu, s2 = model.predict(xx)

        # record our data and update the model
        X.append(xnext)
        Y.append(ynext)
        F.append(f(xbest))

        fig.clear()
        ax1 = fig.add_subplotspec((2, 2), (0, 0), hidex=True)
        ax2 = fig.add_subplotspec((2, 2), (1, 0), hidey=True, sharex=ax1)
        ax3 = fig.add_subplotspec((2, 2), (0, 1), rowspan=2)

        # plot the posterior and data
        ax1.contourf(x1, x2, mu.reshape(x1.shape), alpha=0.4)
        X_ = np.array(X)
        ax1.scatter(X_[:-1, 0], X_[:-1, 1], marker='.')
        ax1.scatter(xbest[0], xbest[1], linewidths=3, marker='o', color='r')
        ax1.scatter(xnext[0], xnext[1], linewidths=3, marker='o', color='g')
        ax1.set_xlim(*bounds[0])
        ax1.set_ylim(*bounds[1])
        ax1.set_title('current model (xbest and xnext)')

        # plot the acquisition function
        ax2.contourf(x1, x2, index(xx).reshape(x1.shape), alpha=0.5)
        ax2.scatter(xbest[0], xbest[1], linewidths=3, marker='o', color='r')
        ax2.scatter(xnext[0], xnext[1], linewidths=3, marker='o', color='g')
        ax2.set_xlim(*bounds[0])
        ax2.set_ylim(*bounds[1])
        ax2.set_title('current policy (xnext)')

        # plot the latent function at recomended points
        ax3.axhline(f(xopt))
        ax3.plot(F)
        ax3.set_ylim(-1., 0.)
        ax3.set_title('value of recommendation')

        # draw
        fig.canvas.draw()
        show(block=False)
Esempio n. 4
0
def main():
    """Run the demo."""
    # define the bounds over which we'll optimize, the optimal x for comparison,
    # and a sequence of test points
    bounds = np.array([[-5, 10.], [0, 15]])
    xopt = np.array([np.pi, 2.275])
    x1, x2 = np.meshgrid(np.linspace(*bounds[0], num=100),
                         np.linspace(*bounds[1], num=100))
    xx = np.c_[x1.flatten(), x2.flatten()]

    # get initial data and some test points.
    X = list(inits.init_latin(bounds, 6))
    Y = [f(x_) for x_ in X]
    F = list()

    # initialize the model
    model = make_gp(0.01, 10, [1., 1.], 0)
    model.add_data(X, Y)

    # set a prior on the parameters
    model.params['like.sn2'].set_prior('uniform', 0.005, 0.015)
    model.params['kern.rho'].set_prior('lognormal', 0, 3)
    model.params['kern.ell'].set_prior('lognormal', 0, 3)
    model.params['mean.bias'].set_prior('normal', 0, 20)

    # make a model which samples parameters
    model = MCMC(model, n=10, rng=None)

    # create a new figure
    fig = figure(figsize=(10, 6))

    while True:
        # get index to solve it and plot it
        index = policies.EI(model, bounds, X, xi=0.1)

        # get the recommendation and the next query
        xbest = recommenders.best_incumbent(model, bounds, X)
        xnext, _ = solvers.solve_lbfgs(index, bounds)

        # observe and update model
        ynext = f(xnext)
        model.add_data(xnext, ynext)

        # evaluate the posterior and the acquisition function
        mu, s2 = model.predict(xx)

        # record our data and update the model
        X.append(xnext)
        Y.append(ynext)
        F.append(f(xbest))

        fig.clear()
        ax1 = fig.add_subplotspec((2, 2), (0, 0), hidex=True)
        ax2 = fig.add_subplotspec((2, 2), (1, 0), hidey=True, sharex=ax1)
        ax3 = fig.add_subplotspec((2, 2), (0, 1), rowspan=2)

        # plot the posterior and data
        ax1.contourf(x1, x2, mu.reshape(x1.shape), alpha=0.4)
        X_ = np.array(X)
        ax1.scatter(X_[:-1, 0], X_[:-1, 1], marker='.')
        ax1.scatter(xbest[0], xbest[1], linewidths=3, marker='o', color='r')
        ax1.scatter(xnext[0], xnext[1], linewidths=3, marker='o', color='g')
        ax1.set_xlim(*bounds[0])
        ax1.set_ylim(*bounds[1])
        ax1.set_title('current model (xbest and xnext)')

        # plot the acquisition function
        ax2.contourf(x1, x2, index(xx).reshape(x1.shape), alpha=0.5)
        ax2.scatter(xbest[0], xbest[1], linewidths=3, marker='o', color='r')
        ax2.scatter(xnext[0], xnext[1], linewidths=3, marker='o', color='g')
        ax2.set_xlim(*bounds[0])
        ax2.set_ylim(*bounds[1])
        ax2.set_title('current policy (xnext)')

        # plot the latent function at recomended points
        ax3.axhline(f(xopt))
        ax3.plot(F)
        ax3.set_ylim(-1., 0.)
        ax3.set_title('value of recommendation')

        # draw
        fig.canvas.draw()
        show(block=False)
Esempio n. 5
0
def main():
    """Run the demo."""
    # define the bounds over which we'll optimize, the optimal x for
    # comparison, and a sequence of test points
    bounds = np.array([[0.5, 2.5]])
    xopt = 0.54856343
    fopt = f(xopt)
    x = np.linspace(bounds[0][0], bounds[0][1], 500)

    # get initial data and some test points.
    X = list(inits.init_latin(bounds, 3))
    Y = [f(x_) for x_ in X]
    F = []

    # initialize the model
    model = make_gp(0.01, 1.9, 0.1, 0)
    model.add_data(X, Y)

    # set a prior on the parameters
    model.params['like.sn2'].set_prior('uniform', 0.005, 0.015)
    model.params['kern.rho'].set_prior('lognormal', 0, 100)
    model.params['kern.ell'].set_prior('lognormal', 0, 10)
    model.params['mean.bias'].set_prior('normal', 0, 20)

    # make a model which samples parameters
    model = MCMC(model, n=20, rng=None)

    # create a new figure
    fig = figure(figsize=(10, 6))

    while True:
        # get acquisition function (or index)
        index = policies.EI(model, bounds, X, xi=0.1)

        # get the recommendation and the next query
        xbest = recommenders.best_incumbent(model, bounds, X)
        xnext, _ = solvers.solve_lbfgs(index, bounds)
        ynext = f(xnext)

        # evaluate the posterior before updating the model for plotting
        mu, s2 = model.predict(x[:, None])

        # record our data and update the model
        X.append(xnext)
        Y.append(ynext)
        F.append(f(xbest))
        model.add_data(xnext, ynext)

        # PLOT EVERYTHING
        fig.clear()
        ax1 = fig.add_subplotspec((2, 2), (0, 0), hidex=True)
        ax2 = fig.add_subplotspec((2, 2), (1, 0), hidey=True, sharex=ax1)
        ax3 = fig.add_subplotspec((2, 2), (0, 1), rowspan=2)

        # plot the posterior and data
        ax1.plot_banded(x, mu, 2*np.sqrt(s2))
        ax1.scatter(np.ravel(X), Y)
        ax1.axvline(xbest)
        ax1.axvline(xnext, color='g')
        ax1.set_ylim(-6, 3)
        ax1.set_title('current model (xbest and xnext)')

        # plot the acquisition function
        ax2.plot_banded(x, index(x[:, None]))
        ax2.axvline(xnext, color='g')
        ax2.set_xlim(*bounds)
        ax2.set_title('current policy (xnext)')

        # plot the latent function at recomended points
        ax3.plot(F)
        ax3.axhline(fopt)
        ax3.set_ylim(0.4, 0.9)
        ax3.set_title('value of recommendation')

        # draw
        fig.canvas.draw()
        show(block=False)