Esempio n. 1
0
def main():
    inData=createDataset()
    env = MarketEnvironment(inData)
    task = MaximizeReturnTask(env)
    numIn=min(env.worldState.shape)

    net=RecurrentNetwork()
    net.addInputModule(BiasUnit(name='bias'))
    #net.addOutputModule(TanhLayer(1, name='out'))
    net.addOutputModule((SignLayer(1,name='out')))
    net.addRecurrentConnection(FullConnection(net['out'], net['out'], name='c3'))
    net.addInputModule(LinearLayer(numIn,name='in'))
    net.addConnection(FullConnection(net['in'],net['out'],name='c1'))
    net.addConnection((FullConnection(net['bias'],net['out'],name='c2')))
    net.sortModules()
    # remove bias (set weight to 0)
    #initialParams=append(array([0.0]),net._params[1:])
    #net._setParameters(initialParams)
    #net._setParameters([ 0.0,-0.05861005,1.64281513,0.98302613])
    #net._setParameters([0., 1.77132063, 1.3843613, 4.73725269])
    #net._setParameters([ 0.0, -0.95173719, 1.92989266, 0.06837472])
    net._setParameters([ 0.0, 1.29560957, -1.14727503, -1.80005888, 0.66351325, 1.19240189])

    ts=env.ts
    learner = RRL(numIn+2,ts) # ENAC() #Q_LinFA(2,1)
    agent = LearningAgent(net,learner)
    exp = ContinuousExperiment(task,agent)

    print(net._params)
    exp.doInteractionsAndLearn(len(ts)-1)
    print(net._params)

    outData=DataFrame(inData['RETURNS']/100)
    outData['ts']=[i/100 for i in ts]
    outData['cum_log_ts']=cumsum([log(1+i) for i in outData['ts']])

    outData['Action_Hist']=env.actionHistory
    outData['trading rets']=pE.calculateTradingReturn(outData['Action_Hist'],outData['ts'])
    outData['cum_log_rets']=cumsum([log(1+x) for x in outData['trading rets']])

    paramHist=learner.paramHistory
    plt.figure(0)
    for i in range(len(net._params)):
        plt.plot(paramHist[i])
    plt.draw()

    print(pE.percentOfOutperformedMonths(outData['trading rets'],outData['ts']))


    #ax1.plot(sign(actionHist),'r')
    plt.figure(1)
    outData['cum_log_ts'].plot(secondary_y=True)
    outData['cum_log_rets'].plot(secondary_y=True)
    outData['Action_Hist'].plot()
    plt.draw()
    plt.show()
Esempio n. 2
0
def learn(client):
	av_table = ActionValueNetwork(4, 1)

	learner = Reinforce()
	agent = LearningAgent(av_table, learner)

	env = CarEnvironment(client)
	task = CarTask(env)

	experiment = ContinuousExperiment(task, agent)

	while True:
		experiment.doInteractionsAndLearn(1)
		agent.learn()
Esempio n. 3
0
def main():
    numIterations=200
    terminal_EMA_SharpeRatio=[0 for i in range(numIterations)]
    numTrades=[0 for i in range(numIterations)]
    sharpe_first_half=[0 for i in range(numIterations)]
    sharpe_sec_half=[0 for i in range(numIterations)]
    sharpe_ratio_total=[0 for i in range(numIterations)]

    for i in range(numIterations):
        env=RWEnvironment(2000)
        task = MaximizeReturnTask(env)
        numIn=min(env.worldState.shape)

        net=RecurrentNetwork()
        net.addInputModule(BiasUnit(name='bias'))
        net.addOutputModule((SignLayer(1,name='out')))
        net.addRecurrentConnection(FullConnection(net['out'], net['out'], name='c3'))
        net.addInputModule(LinearLayer(numIn,name='in'))
        net.addConnection(FullConnection(net['in'],net['out'],name='c1'))
        net.addConnection((FullConnection(net['bias'],net['out'],name='c2')))
        net.sortModules()

        ts=env.ts
        learner = RRL(numIn+2,ts) # ENAC() #Q_LinFA(2,1)
        agent = LearningAgent(net,learner)
        exp = ContinuousExperiment(task,agent)

        #performance tracking

        exp.doInteractionsAndLearn(len(ts)-1)
            #print(net._params)
        terminal_EMA_SharpeRatio[i]=learner.ema_sharpeRatio[-1]
        rs=pE.calculateTradingReturn(env.actionHistory,ts)
        sharpe_first_half[i]=pE.annualisedSharpe(rs[:(len(ts)/2)])
        sharpe_sec_half[i]=pE.annualisedSharpe(rs[len(ts)/2:])
        sharpe_ratio_total[i]=pE.annualisedSharpe(rs)
        numTrades[i]=learner.numTrades



    print(net._params)
    print("average number of trades per 1000 observations is {}".format(mean(numTrades)/2))
    print("mean Sharpe ratios are {} with standard errors {}, and {} with standard errors {}".format(mean(sharpe_first_half),st.sem(sharpe_first_half),mean(sharpe_sec_half),st.sem(sharpe_sec_half)))
    print("average sharpe ratio for each entire epoche is {} with standard error {}".format(mean(sharpe_ratio_total),st.sem(sharpe_ratio_total)))
    fig,ax= plt.subplots(nrows=2,ncols=1,sharex=True,sharey=True)
    l1=ax[0].hist(sharpe_first_half,bins=20)
    ax[0].set_title('Annualised Sharpe Ratio (t=0:1000)')
    l2=ax[1].hist(sharpe_sec_half,bins=20)
    ax[1].set_title('Annualised Sharpe Ratio (t=1001:2000)')
    plt.show()


    #plt.hist(numTrades,bins=20)


    #plt.plot(terminal_EMA_SharpeRatio)
    #plt.show()

    actionHist=env.actionHistory
    ts=[t/100 for t in ts]
    cum_log_r=cumsum([log(1+ts[i]) for i in range(len(ts))])
    cum_log_R=cumsum([log(1+(actionHist[i]*ts[i])) for i in range(len(ts))])



    fix, axes = plt.subplots(3, sharex=True)
    ln1=axes[0].plot(cum_log_r,label='Buy and Hold')
    ln2=axes[0].plot(cum_log_R,label='Trading Agent')
    lns=ln1+ln2
    labs=[l.get_label() for l in lns]
    axes[0].legend(lns,labs,loc='upper left')
    axes[0].set_ylabel("Cumulative Log Returns")
    ax[0].set_title("Artificial Series")
    ln3=axes[1].plot(actionHist,'r',label='Trades')
    axes[1].set_ylabel("F(t)")
    axes[2].plot(learner.ema_sharpeRatio)
    axes[2].set_ylabel("EMA Sharpe Ratio")
    plt.show()
Esempio n. 4
0
                   [1, 1, 1, 1, 1, 1, 1, 0, 1],
                   [1, 0, 0, 0, 0, 0, 0, 0, 1],
                   [1, 1, 1, 1, 1, 1, 1, 1, 1]])

env = Maze(envmatrix, (7, 7))

# create task
task = MazeTask(env)

# create the ActionValueTable
table = ActionValueTable(81, 4)
table.initialize(1)

# create agent with controller and learner
agent = EpsilonGreedyAgent(table, QLambda(4))

experiment = ContinuousExperiment(task, agent)

pylab.gray()
pylab.ion()

for i in range(100000):
    experiment.doInteractionsAndLearn()
    
    if i % 100 == 0:
        pylab.pcolor(table.values.max(1).reshape(9,9))
        pylab.draw()
        agent.reset()
    

Esempio n. 5
0
envmatrix = array([[1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 0, 0, 1, 0, 0, 0, 0, 1],
                   [1, 0, 0, 1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 0, 0, 1, 0, 1],
                   [1, 0, 0, 1, 0, 1, 1, 0, 1], [1, 0, 0, 0, 0, 0, 1, 0, 1],
                   [1, 1, 1, 1, 1, 1, 1, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 1],
                   [1, 1, 1, 1, 1, 1, 1, 1, 1]])

env = Maze(envmatrix, (7, 7))

# create task
task = MazeTask(env)

# create the ActionValueTable
table = ActionValueTable(81, 4)
table.initialize(1)

# create agent with controller and learner
agent = EpsilonGreedyAgent(table, QLambda(4))

experiment = ContinuousExperiment(task, agent)

pylab.gray()
pylab.ion()

for i in range(100000):
    experiment.doInteractionsAndLearn()

    if i % 100 == 0:
        pylab.pcolor(table.values.max(1).reshape(9, 9))
        pylab.draw()
        agent.reset()
Esempio n. 6
0
net.addConnection(FullConnection(net['in'],net['out'],name='c1'))
net.addConnection((FullConnection(net['bias'],net['out'],name='c2')))
net.sortModules()
net._setParameters([-0.0, 1.8, 1.6])
print(net._params)
#print(net.activate(0.5))
#print(net.activate(0.6))
#net.activate(2)


env=AR1Environment(2000)
task=MaximizeReturnTask(env)#MaximizeReturnTask(env)

learner = RRL() # ENAC() #Q_LinFA(2,1)
agent = LearningAgent(net,learner)
exp = ContinuousExperiment(task,agent)

ts=env.ts.tolist()
exp.doInteractionsAndLearn(1999)
print(net._params)
actionHist=env.actionHistory
pyplot.plot(ts[0])
pyplot.plot(actionHist)
pyplot.show()


#snp_rets=env.importSnP().tolist()[0]
#print(snp_rets.tolist()[0])
#pyplot.plot(snp_rets)
#pyplot.show()
Esempio n. 7
0
def main():
    inData=createDataset()
    env = MarketEnvironment(inData)
    task = MaximizeReturnTask(env)
    numIn=min(env.worldState.shape)

    net=RecurrentNetwork()
    net.addInputModule(BiasUnit(name='bias'))
    net.addOutputModule((SignLayer(1,name='out')))
    net.addRecurrentConnection(FullConnection(net['out'], net['out'], name='c3'))
    net.addInputModule(LinearLayer(numIn,name='in'))
    net.addConnection(FullConnection(net['in'],net['out'],name='c1'))
    net.addConnection((FullConnection(net['bias'],net['out'],name='c2')))
    net.sortModules()
    ###net._setParameters([1.89523389,  2.41243781, -0.37355216, 0.60550426, 1.29560957, -1.14727503, -1.80005888, 0.66351325, 1.91905451])
    ###net._setParameters([ 1.07300605, 2.37801446, -0.28118081, -0.78715898, 0.13367809, 0.31757825,-1.23956247, 1.90411791, 0.95458375])
    ##net._setParameters([1.35840492,1.87785682, -0.15779415, -0.79786631, 0.13380422, 0.0067797, -1.28202562, 2.38574234, 0.909462])
    ###net._setParameters([ 0.36062235, 1.70329005, 2.24180157, 0.34832656, 0.31775365, -0.60400026, -0.44850303, 1.50005529, -0.99986366])
    net._setParameters([ 1.15741417, 1.70427034, 1.05050831, -0.47303435, -0.87220272, -1.44743793,  0.93697461, 2.77489952, 0.27374758])
    ts=env.ts
    learner = RRL(numIn+2,ts) # ENAC() #Q_LinFA(2,1)
    agent = LearningAgent(net,learner)
    exp = ContinuousExperiment(task,agent)


    # in sample learning
    in_sample_len=500
    print("Before in sample {}".format(net._params))
    for i in range(100):
        exp.doInteractionsAndLearn(in_sample_len)
        learner.reset()
        agent.reset()
        env.reset()

    # ouy of sample, online learning
    print("Before oos {}".format(net._params))
    exp.doInteractionsAndLearn(len(ts)-1)
    print("After oos {}".format(net._params))

    #performance evaluation
    dfIndex=inData['RETURNS'].index
    rf=0#inData['Fed Fund Target']
    outDataOOS=pE.outData(ts,env.actionHistory,dfIndex,startIndex=in_sample_len)
    sharpe_oos=pE.annualisedSharpe(outDataOOS['trading rets'],rf)
    drawDown_oos=pE.maximumDrawdown(outDataOOS['trading rets'])
    numOutperformedMonths_oos=pE.percentOfOutperformedMonths(outDataOOS['trading rets'],outDataOOS['ts'])
    foo=outDataOOS['cum_log_rets'][-1]
    bar=math.exp(foo)
    traderReturn=math.exp(outDataOOS['cum_log_rets'][-1])-1
    benchmarkReturn=math.exp(outDataOOS['cum_log_ts'].values[-1])-1
    print( "oos sharpe: {}, \noos drawdown: {} \noos percent outperformed months {}\noos trader return {}".format(sharpe_oos, drawDown_oos, numOutperformedMonths_oos,traderReturn))

    paramHist=learner.paramHistory
    inData.rename(columns={'RETURNS': 'r(t-1)'},inplace=True)
    lbs=insert(inData.columns.values,0,'Bias')
    lbs=append(lbs,'F(t-1)')
    plt.figure(0)
    for i in range(len(net._params)):
        if i<7:
            plt.plot(paramHist[i],label=lbs[i])
        else:
            plt.plot(paramHist[i],'--',label=lbs[i])
    plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.1),ncol=3)
    plt.draw()



    fix, axes = plt.subplots(nrows=2,ncols=1)
    plotFrame=outDataOOS[['cum_log_ts','cum_log_rets']]
    plotFrame.columns=['Buy and Hold','Trading Agent']
    plotFrame.plot(ax=axes[0])
    outDataOOS['Action_Hist'].plot(ax=axes[1],color='r')


    plt.draw()
    plt.show()
Esempio n. 8
0
net= RecurrentNetwork()
#Single linear layer with bias unit, and single tanh layer. the linear layer is whats optimised
net.addInputModule(BiasUnit(name='bias'))
net.addOutputModule(TanhLayer(1, name='out'))
net.addRecurrentConnection(FullConnection(net['out'], net['out'], name='c3'))
net.addInputModule(LinearLayer(1,name='in'))
net.addConnection(FullConnection(net['in'],net['out'],name='c1'))
net.addConnection((FullConnection(net['bias'],net['out'],name='c2')))
net.sortModules()
net._setParameters([0, 10, 1.259])
print(net._params)
env=MonthlySnPEnvironment()
task=MaximizeReturnTask(env)
learner = RRL() # ENAC() #Q_LinFA(2,1)
agent = LearningAgent(net,learner)
exp = ContinuousExperiment(task,agent)

ts=env.ts.tolist()
exp.doInteractionsAndLearn(795)
print(net._params)
actionHist=sign(env.actionHistory)/20
pyplot.plot(ts[0])
pyplot.plot(actionHist)
pyplot.show()



######################


from matplotlib import pyplot
Esempio n. 9
0
env = MarketEnvironment()
task = MaximizeReturnTask(env)
numIn=min(env.worldState.shape)

net=RecurrentNetwork()
net.addInputModule(BiasUnit(name='bias'))
net.addOutputModule(TanhLayer(1, name='out'))
net.addRecurrentConnection(FullConnection(net['out'], net['out'], name='c3'))
net.addInputModule(LinearLayer(numIn,name='in'))
net.addConnection(FullConnection(net['in'],net['out'],name='c1'))
net.addConnection((FullConnection(net['bias'],net['out'],name='c2')))
net.sortModules()
#net._setParameters([-0.1749362, 2.10162725, 0.10726541, 1.67949447, -1.51793343, 2.01329702, 1.57673461])

ts=env.ts
learner = RRL(numIn+2,ts) # ENAC() #Q_LinFA(2,1)
agent = LearningAgent(net,learner)
exp = ContinuousExperiment(task,agent)

exp.doInteractionsAndLearn(10000)
print(net._params)
actionHist=(env.actionHistory)

fig, ax1 = plt.subplots()
ax2=ax1.twinx()

ax1.plot(cumsum([log(1+x) for x in ts]))
ax1.plot(cumsum([log(1+(x*sign(y))) for x,y in zip(ts,actionHist)]),'g')
ax2.plot(actionHist,'r')
plt.show()