def visulizeDataSet(network, data, seqno, in_labels, out_labels):

    seq = data.getSequence(seqno)
    tmpDs = SequentialDataSet(data.indim, data.outdim)
    tmpDs.newSequence()

    for i in xrange(data.getSequenceLength(seqno)):
        tmpDs.addSample(seq[0][i], seq[1][i])

    nplots = len(in_labels) + len(out_labels)

    for i in range(len(in_labels)):
        p = PL.subplot(nplots, 1, i + 1)
        p.clear()
        p.plot(tmpDs['input'][:, i])
        p.set_ylabel(in_labels[i])

    for i in range(len(out_labels)):
        p = PL.subplot(nplots, 1, i + 1 + len(in_labels))
        p.clear()

        output = ModuleValidator.calculateModuleOutput(network, tmpDs)

        p.plot(tmpDs['target'][:, i], label='train')
        p.plot(output[:, i], label='sim')

        p.legend()
        p.set_ylabel(out_labels[i])
def visulizeDataSet(network, data, seqno, in_labels, out_labels):

    seq = data.getSequence(seqno)
    tmpDs = SequentialDataSet(data.indim, data.outdim)
    tmpDs.newSequence()

    for i in xrange(data.getSequenceLength(seqno)):
        tmpDs.addSample(seq[0][i], seq[1][i])

    nplots = len(in_labels) + len(out_labels)

    for i in range(len(in_labels)):
        p = PL.subplot(nplots, 1, i + 1)
        p.clear()
        p.plot(tmpDs['input'][:, i])
        p.set_ylabel(in_labels[i])

    for i in range(len(out_labels)):
        p = PL.subplot(nplots, 1, i + 1 + len(in_labels))
        p.clear()

        output = ModuleValidator.calculateModuleOutput(network, tmpDs)

        p.plot(tmpDs['target'][:, i], label='train')
        p.plot(output[:, i], label='sim')

        p.legend()
        p.set_ylabel(out_labels[i])
Esempio n. 3
0
def testOnSequenceData(module, dataset):
    """
    Fetch targets and calculate the modules output on dataset.
    Output and target are in one-of-many format. The class for each sequence is
    determined by argmax OF THE LAST ITEM IN THE SEQUENCE.
    """
    target = dataset.getField("target")
    output = ModuleValidator.calculateModuleOutput(module, dataset)

    # determine last indices of the sequences inside dataset
    ends = SequenceHelper.getSequenceEnds(dataset)

    class_output = array([argmax(output[end]) for end in ends])
    class_target = array([argmax(target[end]) for end in ends])

    return Validator.classificationPerformance(class_output, class_target)
Esempio n. 4
0
def main():
    train, val = getData()

    train_errs = []
    val_errs = []

    for hiddensize in range(10, 100, 5):
        net = buildNetwork(39,
                           hiddensize,
                           1,
                           hiddenclass=SigmoidLayer,
                           outclass=SigmoidLayer)
        trainer = BackpropTrainer(net, train)
        for i in range(20):
            trainer.train()
        verr = ModuleValidator.MSE(net, val)
        print hiddensize, ": ", verr
        val_errs.append(verr)
        train_errs.append(trainer.train())

    return (train_errs, val_errs)
def get_segregation(
        file_path= "/computed/sentence_analysis_reg.pkl.gz",
        error_metric = regression_metric):

    # Loading necessary data.
    best_module, testData, Y_test = data.load( root + file_path )
    n_samples = len(Y_test)

    # Computing error and sorting and grouping errors by rating groups
    Y_pred = ModuleValidator.calculateModuleOutput(best_module, testData)
    
    
    error = [ error_metric(Y_pred[i],Y_test[i]) for i in xrange(n_samples) ]
    err_and_revidx = zip( error, range(n_samples) )

    sorted_err = {0:[], 1:[], 2:[], 3:[], 4:[]}
    # for some reason the last n_samples/2 are corrupted and are not alligned to the reviews.
    for idx in range(n_samples/2):
        sorted_err[ Y_test[idx] ].append( err_and_revidx[idx] )
    for idx in range(5):
        sorted_err[idx] = sorted( sorted_err[idx] )
 
    return sorted_err
 def train(self, args):
     if(self.data.ds == None):
         print("Can't train without loaded data")
         return
     if(args != [] and len(args) >= 2):
         self.net.epochs = int(args[1])
     if(self.net.trainingType == "gradient"):
         if(self.trainer == None):
             self.trainer, self.returnsNet = self.__getGradientTrainer();
         self.__train(self.trainer.trainEpochs, self.returnsNet)
     elif(self.net.trainingType == "optimization"):
         if(self.trainer == None):
             self.trainer, self.returnsNet = self.__getOptimizationTrainer();
         self.__train(self.trainer.learn, self.returnsNet)
         return
     elif(self.trainingType == "crossval"):
         if(self.trainer == None):
             self.trainer, self.returnsNet = self.__getGradientTrainer();
         evaluation = ModuleValidator.classificationPerformance(self.trainer.module, self.data.ds)
         validator = CrossValidator(trainer=self.trainer, dataset=self.trainer.ds, n_folds=5, valfunc=evaluation, verbose=True, max_epochs=1)
         print(validator.validate())
     else:
         raise Exception("Cannot create trainer, no network type specified" + self.trainingType)
Esempio n. 7
0
    if tstsplot and ctstsplot:
        pylab.plot(tsts['input'], ctsts, c='g')

    pylab.xlabel('x')
    pylab.ylabel('y')
    pylab.title('Neuron Number:' + str(nneuron))
    pylab.grid(True)
    plotname = os.path.join(plotdir, ('jpq2layers_plot' + str(iter)))
    pylab.savefig(plotname)


# set-up the neural network
nneuron = 5
mom = 0.98
netname = "LSL-" + str(nneuron) + "-" + str(mom)
mv = ModuleValidator()
v = Validator()

#create the test DataSet
x = numpy.arange(0.0, 1.0 + 0.01, 0.01)
s = 0.5 + 0.4 * numpy.sin(2 * numpy.pi * x)
tsts = SupervisedDataSet(1, 1)
tsts.setField('input', x.reshape(len(x), 1))
tsts.setField('target', s.reshape(len(s), 1))
#read the train DataSet from file
trndata = SupervisedDataSet.loadFromFile(os.path.join(os.getcwd(), 'trndata'))

myneuralnet = os.path.join(os.getcwd(), 'myneuralnet.xml')
if os.path.isfile(myneuralnet):
    n = NetworkReader.readFrom(myneuralnet, name=netname)
    #calculate the test DataSet based on the trained Neural Network
Esempio n. 8
0
starttime = time.time()
print("Training Network 6")
trainer6 = backprop.BackpropTrainer(net6, dataset=train)
score6 = trainer6.train()
trainerrorlist.append(score6)
timeTaken.append(time.time() - starttime)

print("BackPropTrainer 1 has an error rate of " + score1.__str__())
print("BackPropTrainer 2 has an error rate of " + score2.__str__())
print("BackPropTrainer 3 has an error rate of " + score3.__str__())
print("BackPropTrainer 4 has an error rate of " + score4.__str__())
print("BackPropTrainer 5 has an error rate of " + score5.__str__())
print("BackPropTrainer 6 has an error rate of " + score6.__str__())

testErrorArray = []
score1a = ModuleValidator.MSE(net1, test)
testErrorArray.append(score1a)
score2a = ModuleValidator.MSE(net2, test)
testErrorArray.append(score2a)
score3a = ModuleValidator.MSE(net3, test)
testErrorArray.append(score3a)
score4a = ModuleValidator.MSE(net4, test)
testErrorArray.append(score4a)
score5a = ModuleValidator.MSE(net5, test)
testErrorArray.append(score5a)
score6a = ModuleValidator.MSE(net6, test)
testErrorArray.append(score6a)

print("Printing mean square error values")
print("BackPropTrainer 1 has a test error rate of " + score1a.__str__())
print("BackPropTrainer 2 has a test error rate of " + score2a.__str__())
Esempio n. 9
0
alldata.addSample([-1, -1], [0])
alldata.addSample([-1, -1], [0])
alldata.addSample([-1, -1], [0])
alldata.addSample([-1, -1], [0])

alldata.addSample([1, 1], [1])
alldata.addSample([1, 1], [1])
alldata.addSample([1, 1], [1])
alldata.addSample([1, 1], [1])
alldata.addSample([1, 1], [1])

tstdata, trndata = alldata.splitWithProportion(0.25)
trndata._convertToOneOfMany()
tstdata._convertToOneOfMany()

# We can also examine the dataset
print "Number of training patterns: ", len(trndata)
print "Input and output dimensions: ", trndata.indim, trndata.outdim
print "First sample (input, target, class):"
print trndata['input'][0], trndata['target'][0], trndata['class'][0]

fnn     = buildNetwork( trndata.indim, 5, trndata.outdim, recurrent=False )
trainer = BackpropTrainer( fnn, dataset=trndata, momentum=0.1, verbose=True, weightdecay=0.01 )

# I am not sure about this, I don't think my production code is implemented like this
modval = ModuleValidator()
trainer.trainEpochs(20)
trainer.trainOnDataset(dataset=trndata)
cv = CrossValidator( trainer, trndata, n_folds=5, valfunc=modval.MSE )
print "MSE %f" %( cv.validate() )
Esempio n. 10
0
  if tstsplot and ctstsplot:
    pylab.plot(tsts['input'], ctsts,c='g')
 
  pylab.xlabel('x')
  pylab.ylabel('y')
  pylab.title('Neuron Number:'+str(nneuron))
  pylab.grid(True)
  plotname = os.path.join(plotdir,('jpq2layers_plot'+ str(iter)))
  pylab.savefig(plotname)


# set-up the neural network
nneuron = 5
mom = 0.98
netname="LSL-"+str(nneuron)+"-"+str(mom)
mv=ModuleValidator()
v = Validator()
n=FeedForwardNetwork(name=netname)
inLayer = LinearLayer(1,name='in')
hiddenLayer = SigmoidLayer(nneuron,name='hidden0')
outLayer = LinearLayer(1,name='out')
biasinUnit = BiasUnit(name="bhidden0")
biasoutUnit = BiasUnit(name="bout")
n.addInputModule(inLayer)
n.addModule(hiddenLayer)
n.addModule(biasinUnit)
n.addModule(biasoutUnit)
n.addOutputModule(outLayer)
in_to_hidden = FullConnection(inLayer,hiddenLayer)
bias_to_hidden = FullConnection(biasinUnit,hiddenLayer)
bias_to_out = FullConnection(biasoutUnit,outLayer)
Esempio n. 11
0
def main():
    config = MU.ConfigReader('configs/%s' % sys.argv[1])
    config.read()

    logDir = '%s-%s' % (__file__, sys.argv[1])
    os.mkdir(logDir)

    with open('%s/config.txt' % logDir, 'w') as outfile:
        json.dump(config.getConfigDict(), outfile, indent=4)

    dr = MU.DataReader(config['input_tsv_path'])
    data = dr.read(config['interested_columns'])

    inLabels = config['input_columns']

    outLabels = config['output_columns']

    tds, vds = seqDataSetPair(data, inLabels, outLabels,
                              config['seq_label_column'], config['test_seqno'],
                              config['validation_seqno'])

    inScale = config.getDataScale(inLabels)
    outScale = config.getDataScale(outLabels)

    normalizeDataSet(tds, ins=inScale, outs=outScale)
    normalizeDataSet(vds, ins=inScale, outs=outScale)

    trainData = tds
    validationData = vds

    fdim = tds.indim / 5 + 5
    xdim = tds.outdim * 2

    rnn = buildNetwork(tds.indim,
                       fdim,
                       fdim,
                       fdim,
                       xdim,
                       tds.outdim,
                       hiddenclass=SigmoidLayer,
                       recurrent=True)

    rnn.addRecurrentConnection(FullConnection(rnn['hidden0'], rnn['hidden0']))
    rnn.addRecurrentConnection(FullConnection(rnn['hidden1'], rnn['hidden1']))
    rnn.addRecurrentConnection(FullConnection(rnn['hidden2'], rnn['hidden2']))
    rnn.sortModules()

    trainer = RPropMinusTrainer(rnn,
                                dataset=trainData,
                                batchlearning=True,
                                verbose=True,
                                weightdecay=0.005)

    errTime = []
    errTrain = []
    errValidation = []
    epochNo = 0
    while True:

        for i in range(config['epochs_per_update']):
            trainer.train()

        epochNo += config['epochs_per_update']
        NetworkWriter.writeToFile(rnn, '%s/Epoch_%d.xml' % (logDir, epochNo))
        NetworkWriter.writeToFile(rnn, '%s/Latest.xml' % logDir)

        tOut = ModuleValidator.calculateModuleOutput(rnn, trainData)
        vOut = ModuleValidator.calculateModuleOutput(rnn, validationData)

        tScaler = config.getDataScale([config['output_scalar_label']])[0][1]
        tAvgErr = NP.sqrt(NP.mean((trainData['target'] - tOut)**2)) * tScaler
        vAvgErr = NP.sqrt(NP.mean(
            (validationData['target'] - vOut)**2)) * tScaler

        tMaxErr = NP.max(NP.abs(trainData['target'] - tOut)) * tScaler
        vMaxErr = NP.max(NP.abs(validationData['target'] - vOut)) * tScaler

        errTrain.append(tAvgErr)
        errValidation.append(vAvgErr)
        errTime.append(epochNo)

        print "Training error:      avg %5.3f       max %5.3f" % (tAvgErr,
                                                                  tMaxErr)
        print "Validation error:    avg %5.3f       max %5.3f" % (vAvgErr,
                                                                  vMaxErr)
        print "------------------------------------------------------------------------------"

        if (config['visualize_on_training'] == 'yes'):

            PL.figure(1)
            PL.ioff()
            visulizeDataSet(rnn, trainData, 0,
                            config['visualized_columns']['input'],
                            config['visualized_columns']['output'])
            PL.ion()
            PL.draw()

            PL.figure(2)
            PL.ioff()
            visulizeDataSet(rnn, validationData, 0,
                            config['visualized_columns']['input'],
                            config['visualized_columns']['output'])
            PL.ion()
            PL.draw()

            p = PL.figure(3)
            PL.ioff()
            p.clear()
            PL.plot(errTime, errTrain, label='Train')
            PL.plot(errTime, errValidation, label='Validation')
            PL.legend()
            PL.ion()
            PL.draw()
    timeSpentBuilding.append(end - start)

    print("Trainer created")
    start = time.clock()
    trainer = BackpropTrainer(LSTMNetwork, dataset=train)
    error = trainer.train()
    end = time.clock()
    print str(end - start) + " seconds for the training the network"
    print("LSTMNetwork" + str(LSTMNetworkNumber) + " has an error rate of: " +
          str(error))
    overallError.append(error)
    timeSpentTraining.append(end - start)

    print("Validating the trained network to the testing one")
    start = time.clock()
    validation = ModuleValidator.MSE(LSTMNetwork, test)
    end = time.clock()
    print str(end - start) + " seconds for testing the network"
    print("Backpropagation Trainer " + str(LSTMNetworkNumber) +
          " has test error rate of: " + str(validation))
    testComparison.append(validation)
    timeSpentTesting.append(end - start)

    LSTMNetworkNumber += 1

# Values for OverallError and TestComparison
print str(overallError)
print str(testComparison)

# Plot of network's error after training
plt.plot([1, 2, 3, 4], overallError)
Esempio n. 13
0
    def runTraining(self, convergence=0, **kwargs):
        """ Trains the network on the stored dataset. If convergence is >0, check after that many epoch increments
        whether test error is going down again, and stop training accordingly. 
        CAVEAT: No support for Sequential datasets!"""
        assert isinstance(self.Trainer, Trainer)
        if self.Graph is not None:
            self.Graph.setLabels(x='epoch', y='normalized regression error')
            self.Graph.setLegend(['training','test'],loc='upper right')
        epoch = 0
        inc = self.epoinc
        best_error = Infinity
        best_epoch = 0
        learncurve_x = [0]
        learncurve_y = [0.0]
        valcurve_y = [0.0]
        converged = False
        convtest = 0
        if convergence>0:
            logging.info("Convergence criterion: %d batches of %d epochs w/o improvement" % (convergence, inc))
        while epoch<=self.maxepochs and not converged:
            self.Trainer.trainEpochs(inc)
            epoch+=inc
            learncurve_x.append(epoch)
            # calculate errors on TRAINING data
            err_trn = ModuleValidator.validate(Validator.MSE, self.Trainer.module, self.DS)
            learncurve_y.append(err_trn)
            if self.TDS is None:
                logging.info("epoch: %6d,  err_trn: %10g" % (epoch, err_trn))
            else:
                # calculate same errors on TEST data
                err_tst = ModuleValidator.validate(Validator.MSE, self.Trainer.module, self.TDS)
                valcurve_y.append(err_tst)
                if err_tst < best_error:
                    # store best error and parameters
                    best_epoch = epoch
                    best_error = err_tst
                    bestweights = self.Trainer.module.params.copy()
                    convtest = 0
                else:
                    convtest += 1
                logging.info("epoch: %6d,  err_trn: %10g,  err_tst: %10g,  best_tst: %10g" % (epoch, err_trn, err_tst, best_error))
                if self.Graph is not None:
                    self.Graph.addData(1, epoch, err_tst)
                    
                # check if convegence criterion is fulfilled (no improvement after N epoincs)
                if convtest >= convergence:
                    converged = True
                    
            if self.Graph is not None:
                self.Graph.addData(0, epoch, err_trn)
                self.Graph.update()

        # training finished!
        logging.info("Best epoch: %6d, with error: %10g" % (best_epoch, best_error))
        if self.VDS is not None:
            # calculate same errors on VALIDATION data
            self.Trainer.module.params[:] = bestweights.copy()
            err_val = ModuleValidator.validate(Validator.MSE, self.Trainer.module, self.VDS)
            logging.info("Result on evaluation data: %10g" % err_val)
        # store training curve for saving into file
        self.trainCurve = (learncurve_x, learncurve_y, valcurve_y)
def main():
    config = MU.ConfigReader('configs/%s' % sys.argv[1])
    config.read()

    logDir = '%s-%s' % (__file__, sys.argv[1])
    os.mkdir(logDir)

    with open('%s/config.txt' % logDir, 'w') as outfile:
        json.dump(config.getConfigDict(), outfile, indent=4)

    dr = MU.DataReader(config['input_tsv_path'])
    data = dr.read(config['interested_columns'])

    inLabels = config['input_columns']

    outLabels = config['output_columns']

    tds, vds = seqDataSetPair(data, inLabels, outLabels, config['seq_label_column'],
            config['test_seqno'], config['validation_seqno'])

    inScale = config.getDataScale(inLabels)
    outScale = config.getDataScale(outLabels)

    normalizeDataSet(tds, ins = inScale, outs = outScale)
    normalizeDataSet(vds, ins = inScale, outs = outScale)

    trainData = tds
    validationData = vds

    fdim = tds.indim / 2 + 15
    xdim = tds.outdim * 2

    rnn = buildNetwork(tds.indim,
            fdim, fdim, xdim,
            tds.outdim,
            hiddenclass=SigmoidLayer,
            recurrent=True)

    rnn.addRecurrentConnection(FullConnection(rnn['hidden2'], rnn['hidden0']))
    rnn.sortModules()

    trainer = RPropMinusTrainer(rnn, dataset=trainData, batchlearning=True, verbose=True, weightdecay=0.005)
    #trainer = RPropMinusTrainer(rnn, dataset=trainData, batchlearning=True, verbose=True)
    #trainer = BackpropTrainer(rnn, dataset=trainData, learningrate=0.0001,
    #        lrdecay=1.0, momentum=0.4, verbose=True, batchlearning=False,
    #        weightdecay=0)

    errTime = []
    errTrain = []
    errValidation = []
    epochNo = 0
    while True:

        for i in range(config['epochs_per_update']):
            trainer.train()

        epochNo += config['epochs_per_update']
        NetworkWriter.writeToFile(rnn, '%s/Epoch_%d.xml' % (logDir, epochNo))
        NetworkWriter.writeToFile(rnn, '%s/Latest.xml' % logDir)

        tOut = ModuleValidator.calculateModuleOutput(rnn, trainData)
        vOut = ModuleValidator.calculateModuleOutput(rnn, validationData)

        tScaler = config.getDataScale([config['output_scalar_label']])[0][1]
        tAvgErr = NP.sqrt(NP.mean((trainData['target'] - tOut) ** 2)) * tScaler
        vAvgErr = NP.sqrt(NP.mean((validationData['target'] - vOut) ** 2)) * tScaler

        tMaxErr = NP.max(NP.abs(trainData['target'] - tOut)) * tScaler
        vMaxErr = NP.max(NP.abs(validationData['target'] - vOut)) * tScaler

        errTrain.append(tAvgErr)
        errValidation.append(vAvgErr)
        errTime.append(epochNo)

        print "Training error:      avg %5.3f degC      max %5.3f degC" % (tAvgErr, tMaxErr)
        print "Validation error:    avg %5.3f degC      max %5.3f degC" % (vAvgErr, vMaxErr)
        print "------------------------------------------------------------------------------"

        if (config['visualize_on_training'] == 'yes'):

            PL.figure(1)
            PL.ioff()
            visulizeDataSet(rnn, trainData, 0,
                    config['visualized_columns']['input'],
                    config['visualized_columns']['output'])
            PL.ion()
            PL.draw()

            PL.figure(2)
            PL.ioff()
            visulizeDataSet(rnn, validationData, 0,
                    config['visualized_columns']['input'],
                    config['visualized_columns']['output'])
            PL.ion()
            PL.draw()

            p = PL.figure(3)
            PL.ioff()
            p.clear()
            PL.plot(errTime, errTrain, label = 'Train')
            PL.plot(errTime, errValidation, label = 'Validation')
            PL.legend()
            PL.ion()
            PL.draw()
Esempio n. 15
0
import pylab, numpy
from pybrain.tools.shortcuts import buildNetwork
from pybrain.structure import TanhLayer
from pybrain.datasets import SupervisedDataSet
from pybrain.supervised.trainers import BackpropTrainer
from pybrain.tools.validation import CrossValidator, ModuleValidator

results = pylab.loadtxt('credit.txt')
target = results[:, -1]
data = numpy.delete(results, -1, 1)

#print "data", tuple(data[0])
#print "target", (target[0],)

#net = buildNetwork(14, 10, 1)
net = buildNetwork(14, 10, 1, hiddenclass=TanhLayer)
#print net.activate([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])

ds = SupervisedDataSet(14, 1)

for i in range(len(data)):
    ds.addSample(tuple(data[i]), (target[i], ))

trainer = BackpropTrainer(net, ds)
evaluation = ModuleValidator()
validator = CrossValidator(trainer=trainer,
                           dataset=trainer.ds,
                           n_folds=5,
                           valfunc=evaluation.MSE)
print(validator.validate())
def correct(output, target):
  return ModuleValidator.validate(correctValFunc, output, target)
Esempio n. 17
0
  if tstsplot and ctstsplot:
    pylab.plot(tsts['input'], ctsts,c='g')
 
  pylab.xlabel('x')
  pylab.ylabel('y')
  pylab.title('Neuron Number:'+str(nneuron))
  pylab.grid(True)
  plotname = os.path.join(plotdir,('jpq2layers_plot'+ str(iter)))
  pylab.savefig(plotname)


# set-up the neural network
nneuron = 5
mom = 0.98
netname="LSL-"+str(nneuron)+"-"+str(mom)
mv=ModuleValidator()
v = Validator()


#create the test DataSet
x = numpy.arange(0.0, 1.0+0.01, 0.01)
s = 0.5+0.4*numpy.sin(2*numpy.pi*x)
tsts = SupervisedDataSet(1,1)
tsts.setField('input',x.reshape(len(x),1))
tsts.setField('target',s.reshape(len(s),1))
#read the train DataSet from file
trndata = SupervisedDataSet.loadFromFile(os.path.join(os.getcwd(),'trndata'))

myneuralnet = os.path.join(os.getcwd(),'myneuralnet.xml')
if os.path.isfile(myneuralnet):
  n = NetworkReader.readFrom(myneuralnet,name=netname)
    treinadorSupervisionado = BackpropTrainer(rn, dados)

    numeroDeAcessos = 10
    numeroDeEpocasPorAcesso = 50

    fig1 = plt.figure()
    ax1 = fig1.add_subplot(111)
    ax1.axis([0, 2 * math.pi, -1.5, 1.5])
    fig1.hold()

    fig2 = plt.figure()
    ax2 = fig2.add_subplot(111)
    ax2.axis([-50, numeroDeAcessos * numeroDeEpocasPorAcesso + 50, 0.00001, 4])
    ax2.set_yscale('log')
    fig2.hold()
    meansq = ModuleValidator()
    erro2 = meansq.MSE(treinadorSupervisionado.module, dados)
    print erro2
    ax2.plot([0], [erro2], 'bo')

    tempoPausa = 1
    for i in range(numeroDeAcessos):
        treinadorSupervisionado.trainEpochs(numeroDeEpocasPorAcesso)
        meansq = ModuleValidator()
        erro2 = meansq.MSE(treinadorSupervisionado.module, dados)
        print erro2
        ax1.plot(dados['input'],
                 dados['target'],
                 'bo',
                 markersize=7,
                 markeredgewidth=0)
trainer = ReinforcedTrainer(module=nn, rewarder=rewardFunc)

from pybrain.tools.validation import ModuleValidator

import thread


def userthread():
    from IPython.Shell import IPShellEmbed
    ipshell = IPShellEmbed()
    ipshell()


#thread.start_new_thread(userthread, ())

# carry out the training
while True:
    trndata = generateData(nseq=20, ratevarlimit=random.uniform(0.0, 0.3))
    tstdata = generateData(nseq=20)

    trainer.setData(trndata)
    trainer.train()
    trnresult = 100. * (ModuleValidator.MSE(nn, trndata))
    tstresult = 100. * (ModuleValidator.MSE(nn, tstdata))
    print "train error: %5.2f%%" % trnresult, ",  test error: %5.2f%%" % tstresult

    s = getRandomSeq(100, ratevarlimit=random.uniform(0.0, 1.0))
    print " real:", seqStr(s)
    print "   nn:", getSeqOutputFromNN(nn, s)
Esempio n. 20
0
hidden_layer_size=200

net = buildNetwork( t-1 , hidden_layer_size, 1 ,bias = True )
trainer = BackpropTrainer( module=net, dataset=ds1, momentum=0.1, verbose=True, weightdecay=0.01)

for i in range(20):
	print("Training Epoch #"+str(i))
   	trainer.trainEpochs( 1 )

	p = net.activateOnDataset(ds2)
	p = p.argmax(axis=1)  # the highest output activation gives the class
	p = p.reshape(-1,-1) 
	print p

hitrate = ModuleValidator.classificationPerformance(module=net,dataset=ds1)
print hitrate

#trainer.trainUntilConvergence( verbose = True, validationProportion = 0.15, maxEpochs = 20)

# for i in range(20):
# 	trainer.trainEpochs(3)
# 	trnresult = percentError(trainer.testOnClassData(),y_train)
# 	tstresult = percentError(trainer.testOnClassData(dataset=ds2),y_test)
# 	print "epoch: %4d" % trainer.totalepochs, \
# 			"train error: %5.2f%%" % trnresult, \
# 			"test error: %5.2f%%" % tstresult
# 	out = net.activateOnDataset(ds1)
# 	out = out.argmax(axis=1)  # the highest output activation gives the class
# 	#print out
# 	figure(1)
def correct(output, target):
    return ModuleValidator.validate(correctValFunc, output, target)
Esempio n. 22
0
 def eval_nn(params):
     global nn, trndata
     nn.reset()
     nn.params[:] = params
     return ModuleValidator.MSE(nn, trndata)
Esempio n. 23
0
    def runTraining(self, convergence=0, **kwargs):
        """ Trains the network on the stored dataset. If convergence is >0, check after that many epoch increments
        whether test error is going down again, and stop training accordingly. 
        CAVEAT: No support for Sequential datasets!"""
        assert isinstance(self.Trainer, Trainer)
        if self.Graph is not None:
            self.Graph.setLabels(x='epoch', y='normalized regression error')
            self.Graph.setLegend(['training','test'],loc='upper right')
        epoch = 0
        inc = self.epoinc
        best_error = Infinity
        best_epoch = 0
        learncurve_x = [0]
        learncurve_y = [0.0]
        valcurve_y = [0.0]
        converged = False
        convtest = 0
        if convergence>0:
            logging.info("Convergence criterion: %d batches of %d epochs w/o improvement" % (convergence, inc))
        while epoch<=self.maxepochs and not converged:
            self.Trainer.trainEpochs(inc)
            epoch+=inc
            learncurve_x.append(epoch)
            # calculate errors on TRAINING data
            err_trn = ModuleValidator.validate(Validator.MSE, self.Trainer.module, self.DS)
            learncurve_y.append(err_trn)
            if self.TDS is None:
                logging.info("epoch: %6d,  err_trn: %10g" % (epoch, err_trn))
            else:
                # calculate same errors on TEST data
                err_tst = ModuleValidator.validate(Validator.MSE, self.Trainer.module, self.TDS)
                valcurve_y.append(err_tst)
                if err_tst < best_error:
                    # store best error and parameters
                    best_epoch = epoch
                    best_error = err_tst
                    bestweights = self.Trainer.module.params.copy()
                    convtest = 0
                else:
                    convtest += 1
                logging.info("epoch: %6d,  err_trn: %10g,  err_tst: %10g,  best_tst: %10g" % (epoch, err_trn, err_tst, best_error))
                if self.Graph is not None:
                    self.Graph.addData(1, epoch, err_tst)
                    
                # check if convegence criterion is fulfilled (no improvement after N epoincs)
                if convtest >= convergence:
                    converged = True
                    
            if self.Graph is not None:
                self.Graph.addData(0, epoch, err_trn)
                self.Graph.update()

        # training finished!
        logging.info("Best epoch: %6d, with error: %10g" % (best_epoch, best_error))
        if self.VDS is not None:
            # calculate same errors on VALIDATION data
            self.Trainer.module.params[:] = bestweights.copy()
            err_val = ModuleValidator.validate(Validator.MSE, self.Trainer.module, self.VDS)
            logging.info("Result on evaluation data: %10g" % err_val)
        # store training curve for saving into file
        self.trainCurve = (learncurve_x, learncurve_y, valcurve_y)
Esempio n. 24
0
 def score(self, x_data, y_datas):
     return ModuleValidator.validate(regression_score, self.net, self._prepare_dataset(x_data, y_datas))
Esempio n. 25
0
         trainer = RPropMinusTrainer(net, dataset=train_ds)
         train_errors = []
         # save errors for plotting later
         EPOCHS_PER_CYCLE = 10
         CYCLES = 10
         EPOCHS = EPOCHS_PER_CYCLE * CYCLES

         for a in xrange(CYCLES):
            trainer.trainEpochs(EPOCHS_PER_CYCLE)
            train_errors.append(trainer.testOnData())
            epoch = (a+1) * EPOCHS_PER_CYCLE
            print("\r epoch {}/{}".format(epoch, EPOCHS), end="")
            stdout.flush()

         print("final error for training =", train_errors[-1])
         err_tst = ModuleValidator.validate(Validator.MSE, net, dataset=test_ds)
         eval_err.append(err_tst)
         modnet.append(net)
         print("test_Err", err_tst)

       print(eval_err)
       pmin = eval_err.index(min(eval_err))
       print(pmin)
       net = modnet[pmin]
       hypernet.append(net)
       hypereval.append(min(eval_err))

    hypermin = hypereval.index(min(eval_err))
    net = hypernet[hypermin]
    print("number of hidden layers", hypermin+1)
def main():
    config = MU.ConfigReader("configs/%s" % sys.argv[1])
    config.read()

    logDir = "%s-%s" % (__file__, sys.argv[1])
    os.mkdir(logDir)

    with open("%s/config.txt" % logDir, "w") as outfile:
        json.dump(config.getConfigDict(), outfile, indent=4)

    dr = MU.DataReader(config["input_tsv_path"])
    data = dr.read(config["interested_columns"])

    inLabels = config["input_columns"]

    outLabels = config["output_columns"]

    tds, vds = seqDataSetPair(
        data, inLabels, outLabels, config["seq_label_column"], config["test_seqno"], config["validation_seqno"]
    )

    inScale = config.getDataScale(inLabels)
    outScale = config.getDataScale(outLabels)

    normalizeDataSet(tds, ins=inScale, outs=outScale)
    normalizeDataSet(vds, ins=inScale, outs=outScale)

    trainData = tds
    validationData = vds

    fdim = tds.indim / 5 + 5
    xdim = tds.outdim * 2

    rnn = buildNetwork(tds.indim, fdim, fdim, xdim, tds.outdim, hiddenclass=SigmoidLayer, recurrent=True)

    rnn.addRecurrentConnection(FullConnection(rnn["hidden0"], rnn["hidden0"]))
    rnn.addRecurrentConnection(FullConnection(rnn["hidden1"], rnn["hidden1"]))
    rnn.sortModules()

    trainer = RPropMinusTrainer(rnn, dataset=trainData, batchlearning=True, verbose=True)

    errTime = []
    errTrain = []
    errValidation = []
    epochNo = 0
    while True:

        for i in range(config["epochs_per_update"]):
            trainer.train()

        epochNo += config["epochs_per_update"]
        NetworkWriter.writeToFile(rnn, "%s/Epoch_%d.xml" % (logDir, epochNo))
        NetworkWriter.writeToFile(rnn, "%s/Latest.xml" % logDir)

        tOut = ModuleValidator.calculateModuleOutput(rnn, trainData)
        vOut = ModuleValidator.calculateModuleOutput(rnn, validationData)

        tScaler = config.getDataScale([config["output_scalar_label"]])[0][1]
        tAvgErr = NP.sqrt(NP.mean((trainData["target"] - tOut) ** 2)) * tScaler
        vAvgErr = NP.sqrt(NP.mean((validationData["target"] - vOut) ** 2)) * tScaler

        tMaxErr = NP.max(NP.abs(trainData["target"] - tOut)) * tScaler
        vMaxErr = NP.max(NP.abs(validationData["target"] - vOut)) * tScaler

        errTrain.append(tAvgErr)
        errValidation.append(vAvgErr)
        errTime.append(epochNo)

        print "Training error:      avg %5.3f degC      max %5.3f degC" % (tAvgErr, tMaxErr)
        print "Validation error:    avg %5.3f degC      max %5.3f degC" % (vAvgErr, vMaxErr)
        print "------------------------------------------------------------------------------"

        if config["visualize_on_training"] == "yes":

            PL.figure(1)
            PL.ioff()
            visulizeDataSet(
                rnn, trainData, 0, config["visualized_columns"]["input"], config["visualized_columns"]["output"]
            )
            PL.ion()
            PL.draw()

            PL.figure(2)
            PL.ioff()
            visulizeDataSet(
                rnn, validationData, 0, config["visualized_columns"]["input"], config["visualized_columns"]["output"]
            )
            PL.ion()
            PL.draw()

            p = PL.figure(3)
            PL.ioff()
            p.clear()
            PL.plot(errTime, errTrain, label="Train")
            PL.plot(errTime, errValidation, label="Validation")
            PL.legend()
            PL.ion()
            PL.draw()