Esempio n. 1
0
  def _define_step(self, done, score, summary):
    """Combine operations of a phase.

    Keeps track of the mean score and when to report it.

    Args:
      done: Tensor indicating whether current score can be used.
      score: Tensor holding the current, possibly intermediate, score.
      summary: Tensor holding summary string to write if not an empty string.

    Returns:
      Tuple of summary tensor, mean score, and new global step. The mean score
      is zero for non reporting steps.
    """
    if done.shape.ndims == 0:
      done = done[None]
    if score.shape.ndims == 0:
      score = score[None]
    score_mean = streaming_mean.StreamingMean((), tf.float32)
    with tf.control_dependencies([done, score, summary]):
      done_score = tf.gather(score, tf.where(done)[:, 0])
      submit_score = tf.cond(tf.reduce_any(done), lambda: score_mean.submit(done_score), tf.no_op)
    with tf.control_dependencies([submit_score]):
      mean_score = tf.cond(self._report, score_mean.clear, float)
      steps_made = tf.shape(score)[0]
      next_step = self._step.assign_add(steps_made)
    with tf.control_dependencies([mean_score, next_step]):
      return tf.identity(summary), mean_score, next_step, steps_made
Esempio n. 2
0
def simulate(batch_env, algo, log=True, reset=False):
    """Simulation step of a vecrotized algorithm with in-graph environments.

  Integrates the operations implemented by the algorithm and the environments
  into a combined operation.

  Args:
    batch_env: In-graph batch environment.
    algo: Algorithm instance implementing required operations.
    log: Tensor indicating whether to compute and return summaries.
    reset: Tensor causing all environments to reset.

  Returns:
    Tuple of tensors containing done flags for the current episodes, possibly
    intermediate scores for the episodes, and a summary tensor.
  """
    def _define_begin_episode(agent_indices):
        """Reset environments, intermediate scores and durations for new episodes.

    Args:
      agent_indices: Tensor containing batch indices starting an episode.

    Returns:
      Summary tensor.
    """
        assert agent_indices.shape.ndims == 1
        zero_scores = tf.zeros_like(agent_indices, tf.float32)
        zero_durations = tf.zeros_like(agent_indices)
        reset_ops = [
            batch_env.reset(agent_indices),
            tf.scatter_update(score, agent_indices, zero_scores),
            tf.scatter_update(length, agent_indices, zero_durations)
        ]
        with tf.control_dependencies(reset_ops):
            return algo.begin_episode(agent_indices)

    def _define_step():
        """Request actions from the algorithm and apply them to the environments.

    Increments the lengths of all episodes and increases their scores by the
    current reward. After stepping the environments, provides the full
    transition tuple to the algorithm.

    Returns:
      Summary tensor.
    """
        prevob = batch_env.observ + 0  # Ensure a copy of the variable value.
        action, step_summary = algo.perform(prevob)
        action.set_shape(batch_env.action.shape)
        with tf.control_dependencies([batch_env.simulate(action)]):
            add_score = score.assign_add(batch_env.reward)
            inc_length = length.assign_add(tf.ones(len(batch_env), tf.int32))
        with tf.control_dependencies([add_score, inc_length]):
            experience_summary = algo.experience(prevob, batch_env.action,
                                                 batch_env.reward,
                                                 batch_env.done,
                                                 batch_env.observ)
        return tf.summary.merge([step_summary, experience_summary])

    def _define_end_episode(agent_indices):
        """Notify the algorithm of ending episodes.

    Also updates the mean score and length counters used for summaries.

    Args:
      agent_indices: Tensor holding batch indices that end their episodes.

    Returns:
      Summary tensor.
    """
        assert agent_indices.shape.ndims == 1
        submit_score = mean_score.submit(tf.gather(score, agent_indices))
        submit_length = mean_length.submit(
            tf.cast(tf.gather(length, agent_indices), tf.float32))
        with tf.control_dependencies([submit_score, submit_length]):
            return algo.end_episode(agent_indices)

    def _define_summaries():
        """Reset the average score and duration, and return them as summary.

    Returns:
      Summary string.
    """
        score_summary = tf.cond(
            tf.logical_and(log, tf.cast(mean_score.count, tf.bool)),
            lambda: tf.summary.scalar('mean_score', mean_score.clear()), str)
        length_summary = tf.cond(
            tf.logical_and(log, tf.cast(mean_length.count, tf.bool)),
            lambda: tf.summary.scalar('mean_length', mean_length.clear()), str)
        return tf.summary.merge([score_summary, length_summary])

    with tf.name_scope('simulate'):
        log = tf.convert_to_tensor(log)
        reset = tf.convert_to_tensor(reset)
        with tf.variable_scope('simulate_temporary'):
            score = tf.Variable(tf.zeros(len(batch_env), dtype=tf.float32),
                                False,
                                name='score')
            length = tf.Variable(tf.zeros(len(batch_env), dtype=tf.int32),
                                 False,
                                 name='length')
        mean_score = streaming_mean.StreamingMean((), tf.float32)
        mean_length = streaming_mean.StreamingMean((), tf.float32)
        agent_indices = tf.cond(
            reset, lambda: tf.range(len(batch_env)),
            lambda: tf.cast(tf.where(batch_env.done)[:, 0], tf.int32))
        begin_episode = tf.cond(tf.cast(tf.shape(agent_indices)[0], tf.bool),
                                lambda: _define_begin_episode(agent_indices),
                                str)
        with tf.control_dependencies([begin_episode]):
            step = _define_step()
        with tf.control_dependencies([step]):
            agent_indices = tf.cast(tf.where(batch_env.done)[:, 0], tf.int32)
            end_episode = tf.cond(tf.cast(tf.shape(agent_indices)[0], tf.bool),
                                  lambda: _define_end_episode(agent_indices),
                                  str)
        with tf.control_dependencies([end_episode]):
            summary = tf.summary.merge(
                [_define_summaries(), begin_episode, step, end_episode])
        with tf.control_dependencies([summary]):
            done, score = tf.identity(batch_env.done), tf.identity(score)
        return done, score, summary