Esempio n. 1
0
def test_eq_tricky_chempot_cond():
    """
    Chemical potential condition with difficult convergence for chemical potentials.
    """
    eq = equilibrium(ISSUE43_DBF, ['AL', 'NI', 'CR', 'VA'], ['FCC_A1', 'GAMMA_PRIME'],
                     {v.MU('AL'): -135620.9960449, v.MU('CR'): -47269.29002414, v.T: 1273, v.P: 101325},
                     verbose=True)
    chempots = np.array([-135620.9960449, -47269.29002414, -92304.23688281])
    print(np.nansum(np.squeeze(eq.NP * eq.X), axis=-2))
    assert_allclose(eq.GM.values, -83242.872102)
    assert_allclose(np.nansum(np.squeeze(eq.NP * eq.X), axis=-2), [0.19624727,  0.38996739,  0.41378534])
    assert_allclose(np.squeeze(eq.MU.values), chempots)
Esempio n. 2
0
def test_eq_charge_halite():
    """Halite (with charged species) is correctly calculated and charged balanced in equilibrium"""
    alfeo = ALFEO_DBF
    comps = ['FE', 'AL', 'O', 'VA']
    phases = ['HALITE']
    conds = {v.P: 101325, v.N: 1, v.T: 500, v.X('FE'): 0.2, v.MU('O'): -200000}
    res = equilibrium(alfeo, comps, phases, conds, verbose=True)
    assert_allclose(res.GM.values, -248202.28)
Esempio n. 3
0
def test_eq_issue259():
    """
    Chemical potential condition for phase with internal degrees of freedom.
    """
    dbf = ALFE_DBF
    comps = ['AL', 'FE', 'VA']
    eq = equilibrium(dbf, comps, ['B2_BCC'], {v.P: 101325, v.N: 1, v.T: 1013, v.MU('AL'): -95906})
    assert_allclose(eq.GM.values, -65786.260)
    assert_allclose(eq.MU.values.flatten(), [-95906., -52877.592122])
Esempio n. 4
0
def test_eq_magnetic_chempot_cond():
    """
    Chemical potential condition with an ill-conditioned Hessian due to magnetism (Tc->0).
    This is difficult to reproduce so we only include some known examples here.
    """
    # This set of conditions is known to trigger the issue
    eq = equilibrium(ALFE_DBF, ['AL', 'FE', 'VA'], ['FCC_A1', 'AL13FE4'],
                     {v.MU('FE'): -123110, v.T: 300, v.P: 1e5}, verbose=True)
    assert_allclose(np.squeeze(eq.GM.values), -35427.1, atol=0.1)
    assert_allclose(np.squeeze(eq.MU.values), [-8490.7, -123110], atol=0.1)
Esempio n. 5
0
def test_eq_ideal_chempot_cond():
    TDB = """
     ELEMENT A    GRAPHITE                   12.011     1054.0      5.7423 !
     ELEMENT B   BCC_A2                     55.847     4489.0     27.2797 !
     ELEMENT C   BCC_A2                     55.847     4489.0     27.2797 !
     TYPE_DEFINITION % SEQ * !
     PHASE TEST % 1 1 !
     CONSTITUENT TEST : A,B,C: !
    """
    my_phases = ['TEST']
    comps = ['A', 'B', 'C']
    comps = sorted(comps)
    conds = dict({v.T: 1000, v.P: 101325, v.N: 1})
    conds[v.MU('C')] = -1000
    conds[v.X('A')] = 0.01
    eq = equilibrium(Database(TDB), comps, my_phases, conds, verbose=True)
    np.testing.assert_allclose(eq.GM.values.squeeze(), -3219.570565)
    np.testing.assert_allclose(eq.MU.values.squeeze(), [-38289.687511, -18873.23674,  -1000.])
    np.testing.assert_allclose(eq.X.isel(vertex=0).values.squeeze(), [0.01,  0.103321,  0.886679], atol=1e-4)
Esempio n. 6
0
def equilibrium(dbf, comps, phases, conditions, **kwargs):
    """
    Calculate the equilibrium state of a system containing the specified
    components and phases, under the specified conditions.
    Model parameters are taken from 'dbf'.

    Parameters
    ----------
    dbf : Database
        Thermodynamic database containing the relevant parameters.
    comps : list
        Names of components to consider in the calculation.
    phases : list or dict
        Names of phases to consider in the calculation.
    conditions : dict or (list of dict)
        StateVariables and their corresponding value.
    verbose : bool, optional (Default: True)
        Show progress of calculations.
    grid_opts : dict, optional
        Keyword arguments to pass to the initial grid routine.

    Returns
    -------
    Structured equilibrium calculation.

    Examples
    --------
    None yet.
    """
    active_phases = unpack_phases(phases) or sorted(dbf.phases.keys())
    comps = sorted(comps)
    indep_vars = ['T', 'P']
    grid_opts = kwargs.pop('grid_opts', dict())
    verbose = kwargs.pop('verbose', True)
    phase_records = dict()
    callable_dict = kwargs.pop('callables', dict())
    grad_callable_dict = kwargs.pop('grad_callables', dict())
    hess_callable_dict = kwargs.pop('hess_callables', dict())
    points_dict = dict()
    maximum_internal_dof = 0
    conds = OrderedDict((key, unpack_condition(value))
                        for key, value in sorted(conditions.items(), key=str))
    str_conds = OrderedDict((str(key), value) for key, value in conds.items())
    indep_vals = list([float(x) for x in np.atleast_1d(val)]
                      for key, val in str_conds.items() if key in indep_vars)
    components = [x for x in sorted(comps) if not x.startswith('VA')]
    # Construct models for each phase; prioritize user models
    models = unpack_kwarg(kwargs.pop('model', Model), default_arg=Model)
    if verbose:
        print('Components:', ' '.join(comps))
        print('Phases:', end=' ')
    for name in active_phases:
        mod = models[name]
        if isinstance(mod, type):
            models[name] = mod = mod(dbf, comps, name)
        variables = sorted(mod.energy.atoms(v.StateVariable).union(
            {key
             for key in conditions.keys() if key in [v.T, v.P]}),
                           key=str)
        site_fracs = sorted(mod.energy.atoms(v.SiteFraction), key=str)
        maximum_internal_dof = max(maximum_internal_dof, len(site_fracs))
        # Extra factor '1e-100...' is to work around an annoying broadcasting bug for zero gradient entries
        #models[name].models['_broadcaster'] = 1e-100 * Mul(*variables) ** 3
        out = models[name].energy
        undefs = list(out.atoms(Symbol) - out.atoms(v.StateVariable))
        for undef in undefs:
            out = out.xreplace({undef: float(0)})
        callable_dict[name], grad_callable_dict[name], hess_callable_dict[name] = \
            build_functions(out, [v.P, v.T] + site_fracs)

        # Adjust gradient by the approximate chemical potentials
        hyperplane = Add(*[
            v.MU(i) * mole_fraction(dbf.phases[name], comps, i) for i in comps
            if i != 'VA'
        ])
        plane_obj, plane_grad, plane_hess = build_functions(
            hyperplane, [v.MU(i) for i in comps if i != 'VA'] + site_fracs)
        phase_records[name.upper()] = PhaseRecord(
            variables=variables,
            grad=grad_callable_dict[name],
            hess=hess_callable_dict[name],
            plane_grad=plane_grad,
            plane_hess=plane_hess)
        if verbose:
            print(name, end=' ')
    if verbose:
        print('[done]', end='\n')

    # 'calculate' accepts conditions through its keyword arguments
    grid_opts.update(
        {key: value
         for key, value in str_conds.items() if key in indep_vars})
    if 'pdens' not in grid_opts:
        grid_opts['pdens'] = 100

    coord_dict = str_conds.copy()
    coord_dict['vertex'] = np.arange(len(components))
    grid_shape = np.meshgrid(*coord_dict.values(), indexing='ij',
                             sparse=False)[0].shape
    coord_dict['component'] = components
    if verbose:
        print('Computing initial grid', end=' ')

    grid = calculate(dbf,
                     comps,
                     active_phases,
                     output='GM',
                     model=models,
                     callables=callable_dict,
                     fake_points=True,
                     **grid_opts)

    if verbose:
        print('[{0} points, {1}]'.format(len(grid.points),
                                         sizeof_fmt(grid.nbytes)),
              end='\n')

    properties = xray.Dataset(
        {
            'NP': (list(str_conds.keys()) + ['vertex'], np.empty(grid_shape)),
            'GM': (list(str_conds.keys()), np.empty(grid_shape[:-1])),
            'MU':
            (list(str_conds.keys()) + ['component'], np.empty(grid_shape)),
            'points': (list(str_conds.keys()) + ['vertex'],
                       np.empty(grid_shape, dtype=np.int))
        },
        coords=coord_dict,
        attrs={'iterations': 1},
    )
    # Store the potentials from the previous iteration
    current_potentials = properties.MU.copy()

    for iteration in range(MAX_ITERATIONS):
        if verbose:
            print('Computing convex hull [iteration {}]'.format(
                properties.attrs['iterations']))
        # lower_convex_hull will modify properties
        lower_convex_hull(grid, properties)
        progress = np.abs(current_potentials - properties.MU).values
        converged = (progress < MIN_PROGRESS).all(axis=-1)
        if verbose:
            print('progress', progress.max(),
                  '[{} conditions updated]'.format(np.sum(~converged)))
        if progress.max() < MIN_PROGRESS:
            if verbose:
                print('Convergence achieved')
            break
        current_potentials[...] = properties.MU.values
        if verbose:
            print('Refining convex hull')
        # Insert extra dimensions for non-T,P conditions so GM broadcasts correctly
        energy_broadcast_shape = grid.GM.values.shape[:len(indep_vals)] + \
            (1,) * (len(str_conds) - len(indep_vals)) + (grid.GM.values.shape[-1],)
        driving_forces = np.einsum('...i,...i',
                                   properties.MU.values[..., np.newaxis, :].astype(np.float),
                                   grid.X.values[np.index_exp[...] +
                                                 (np.newaxis,) * (len(str_conds) - len(indep_vals)) +
                                                 np.index_exp[:, :]].astype(np.float)) - \
            grid.GM.values.view().reshape(energy_broadcast_shape)

        for name in active_phases:
            dof = len(models[name].energy.atoms(v.SiteFraction))
            current_phase_indices = (grid.Phase.values == name
                                     ).reshape(energy_broadcast_shape[:-1] +
                                               (-1, ))
            # Broadcast to capture all conditions
            current_phase_indices = np.broadcast_arrays(
                current_phase_indices, np.empty(driving_forces.shape))[0]
            # This reshape is safe as long as phases have the same number of points at all indep. conditions
            current_phase_driving_forces = driving_forces[
                current_phase_indices].reshape(
                    current_phase_indices.shape[:-1] + (-1, ))
            # Note: This works as long as all points are in the same phase order for all T, P
            current_site_fractions = grid.Y.values[..., current_phase_indices[
                (0, ) * len(str_conds)], :]
            if np.sum(
                    current_site_fractions[(0, ) *
                                           len(indep_vals)][..., :dof]) == dof:
                # All site fractions are 1, aka zero internal degrees of freedom
                # Impossible to refine these points, so skip this phase
                points_dict[name] = current_site_fractions[
                    (0, ) * len(indep_vals)][..., :dof]
                continue
            # Find the N points with largest driving force for a given set of conditions
            # Remember that driving force has a sign, so we want the "most positive" values
            # N is the number of components, in this context
            # N points define a 'best simplex' for every set of conditions
            # We also need to restrict ourselves to one phase at a time
            trial_indices = np.argpartition(current_phase_driving_forces,
                                            -len(components),
                                            axis=-1)[..., -len(components):]
            trial_indices = trial_indices.ravel()
            statevar_indices = np.unravel_index(
                np.arange(
                    np.multiply.reduce(properties.GM.values.shape +
                                       (len(components), ))),
                properties.GM.values.shape +
                (len(components), ))[:len(indep_vals)]
            points = current_site_fractions[np.index_exp[statevar_indices +
                                                         (trial_indices, )]]
            points.shape = properties.points.shape[:-1] + (
                -1, maximum_internal_dof)
            # The Y arrays have been padded, so we should slice off the padding
            points = points[..., :dof]
            #print('Starting points shape: ', points.shape)
            #print(points)
            if len(points) == 0:
                if name in points_dict:
                    del points_dict[name]
                # No nearly stable points: skip this phase
                continue

            num_vars = len(phase_records[name].variables)
            plane_grad = phase_records[name].plane_grad
            plane_hess = phase_records[name].plane_hess
            statevar_grid = np.meshgrid(*itertools.chain(indep_vals),
                                        sparse=True,
                                        indexing='ij')
            # TODO: A more sophisticated treatment of constraints
            num_constraints = len(dbf.phases[name].sublattices)
            constraint_jac = np.zeros(
                (num_constraints, num_vars - len(indep_vars)))
            # Independent variables are always fixed (in this limited implementation)
            #for idx in range(len(indep_vals)):
            #    constraint_jac[idx, idx] = 1
            # This is for site fraction balance constraints
            var_idx = 0  #len(indep_vals)
            for idx in range(len(dbf.phases[name].sublattices)):
                active_in_subl = set(
                    dbf.phases[name].constituents[idx]).intersection(comps)
                constraint_jac[idx, var_idx:var_idx + len(active_in_subl)] = 1
                var_idx += len(active_in_subl)

            newton_iteration = 0
            while newton_iteration < MAX_NEWTON_ITERATIONS:
                flattened_points = points.reshape(
                    points.shape[:len(indep_vals)] + (-1, points.shape[-1]))
                grad_args = itertools.chain(
                    [i[..., None] for i in statevar_grid], [
                        flattened_points[..., i]
                        for i in range(flattened_points.shape[-1])
                    ])
                grad = np.array(phase_records[name].grad(*grad_args),
                                dtype=np.float)
                # Remove derivatives wrt T,P
                grad = grad[..., len(indep_vars):]
                grad.shape = points.shape
                grad[np.isnan(grad).any(
                    axis=-1
                )] = 0  # This is necessary for gradients on the edge of space
                hess_args = itertools.chain(
                    [i[..., None] for i in statevar_grid], [
                        flattened_points[..., i]
                        for i in range(flattened_points.shape[-1])
                    ])
                hess = np.array(phase_records[name].hess(*hess_args),
                                dtype=np.float)
                # Remove derivatives wrt T,P
                hess = hess[..., len(indep_vars):, len(indep_vars):]
                hess.shape = points.shape + (hess.shape[-1], )
                hess[np.isnan(hess).any(axis=(-2,
                                              -1))] = np.eye(hess.shape[-1])
                plane_args = itertools.chain([
                    properties.MU.values[..., i][..., None]
                    for i in range(properties.MU.shape[-1])
                ], [points[..., i] for i in range(points.shape[-1])])
                cast_grad = np.array(plane_grad(*plane_args), dtype=np.float)
                # Remove derivatives wrt chemical potentials
                cast_grad = cast_grad[..., properties.MU.shape[-1]:]
                grad = grad - cast_grad
                plane_args = itertools.chain([
                    properties.MU.values[..., i][..., None]
                    for i in range(properties.MU.shape[-1])
                ], [points[..., i] for i in range(points.shape[-1])])
                cast_hess = np.array(plane_hess(*plane_args), dtype=np.float)
                # Remove derivatives wrt chemical potentials
                cast_hess = cast_hess[..., properties.MU.shape[-1]:,
                                      properties.MU.shape[-1]:]
                cast_hess = -cast_hess + hess
                hess = cast_hess.astype(np.float, copy=False)
                try:
                    e_matrix = np.linalg.inv(hess)
                except np.linalg.LinAlgError:
                    print(hess)
                    raise
                current = calculate(
                    dbf,
                    comps,
                    name,
                    output='GM',
                    model=models,
                    callables=callable_dict,
                    fake_points=False,
                    points=points.reshape(points.shape[:len(indep_vals)] +
                                          (-1, points.shape[-1])),
                    **grid_opts)
                current_plane = np.multiply(
                    current.X.values.reshape(points.shape[:-1] +
                                             (len(components), )),
                    properties.MU.values[..., np.newaxis, :]).sum(axis=-1)
                current_df = current.GM.values.reshape(
                    points.shape[:-1]) - current_plane
                #print('Inv hess check: ', np.isnan(e_matrix).any())
                #print('grad check: ', np.isnan(grad).any())
                dy_unconstrained = -np.einsum('...ij,...j->...i', e_matrix,
                                              grad)
                #print('dy_unconstrained check: ', np.isnan(dy_unconstrained).any())
                proj_matrix = np.dot(e_matrix, constraint_jac.T)
                inv_matrix = np.rollaxis(np.dot(constraint_jac, proj_matrix),
                                         0, -1)
                inv_term = np.linalg.inv(inv_matrix)
                #print('inv_term check: ', np.isnan(inv_term).any())
                first_term = np.einsum('...ij,...jk->...ik', proj_matrix,
                                       inv_term)
                #print('first_term check: ', np.isnan(first_term).any())
                # Normally a term for the residual here
                # We only choose starting points which obey the constraints, so r = 0
                cons_summation = np.einsum('...i,...ji->...j',
                                           dy_unconstrained, constraint_jac)
                #print('cons_summation check: ', np.isnan(cons_summation).any())
                cons_correction = np.einsum('...ij,...j->...i', first_term,
                                            cons_summation)
                #print('cons_correction check: ', np.isnan(cons_correction).any())
                dy_constrained = dy_unconstrained - cons_correction
                #print('dy_constrained check: ', np.isnan(dy_constrained).any())
                # TODO: Support for adaptive changing independent variable steps
                new_direction = dy_constrained
                #print('new_direction', new_direction)
                #print('points', points)
                # Backtracking line search
                if np.isnan(new_direction).any():
                    print('new_direction', new_direction)
                #print('Convergence angle:', -(grad*new_direction).sum(axis=-1) / (np.linalg.norm(grad, axis=-1) * np.linalg.norm(new_direction, axis=-1)))
                new_points = points + INITIAL_STEP_SIZE * new_direction
                alpha = np.full(new_points.shape[:-1],
                                INITIAL_STEP_SIZE,
                                dtype=np.float)
                alpha[np.all(np.linalg.norm(new_direction, axis=-1) <
                             MIN_DIRECTION_NORM,
                             axis=-1)] = 0
                negative_points = np.any(new_points < 0., axis=-1)
                while np.any(negative_points):
                    alpha[negative_points] *= 0.5
                    new_points = points + alpha[...,
                                                np.newaxis] * new_direction
                    negative_points = np.any(new_points < 0., axis=-1)
                # Backtracking line search
                # alpha now contains maximum possible values that keep us inside the space
                # but we don't just want to take the biggest step; we want the biggest step which reduces energy
                new_points = new_points.reshape(
                    new_points.shape[:len(indep_vals)] +
                    (-1, new_points.shape[-1]))
                candidates = calculate(dbf,
                                       comps,
                                       name,
                                       output='GM',
                                       model=models,
                                       callables=callable_dict,
                                       fake_points=False,
                                       points=new_points,
                                       **grid_opts)
                candidate_plane = np.multiply(
                    candidates.X.values.reshape(points.shape[:-1] +
                                                (len(components), )),
                    properties.MU.values[..., np.newaxis, :]).sum(axis=-1)
                energy_diff = (candidates.GM.values.reshape(
                    new_direction.shape[:-1]) - candidate_plane) - current_df
                new_points.shape = new_direction.shape
                bad_steps = energy_diff > alpha * 1e-4 * (new_direction *
                                                          grad).sum(axis=-1)
                backtracking_iterations = 0
                while np.any(bad_steps):
                    alpha[bad_steps] *= 0.5
                    new_points = points + alpha[...,
                                                np.newaxis] * new_direction
                    #print('new_points', new_points)
                    #print('bad_steps', bad_steps)
                    new_points = new_points.reshape(
                        new_points.shape[:len(indep_vals)] +
                        (-1, new_points.shape[-1]))
                    candidates = calculate(dbf,
                                           comps,
                                           name,
                                           output='GM',
                                           model=models,
                                           callables=callable_dict,
                                           fake_points=False,
                                           points=new_points,
                                           **grid_opts)
                    candidate_plane = np.multiply(
                        candidates.X.values.reshape(points.shape[:-1] +
                                                    (len(components), )),
                        properties.MU.values[..., np.newaxis, :]).sum(axis=-1)
                    energy_diff = (candidates.GM.values.reshape(
                        new_direction.shape[:-1]) -
                                   candidate_plane) - current_df
                    #print('energy_diff', energy_diff)
                    new_points.shape = new_direction.shape
                    bad_steps = energy_diff > alpha * 1e-4 * (
                        new_direction * grad).sum(axis=-1)
                    backtracking_iterations += 1
                    if backtracking_iterations > MAX_BACKTRACKING:
                        break
                biggest_step = np.max(
                    np.linalg.norm(new_points - points, axis=-1))
                if biggest_step < 1e-2:
                    if verbose:
                        print('N-R convergence on mini-iteration',
                              newton_iteration, '[{}]'.format(name))
                    points = new_points
                    break
                if verbose:
                    #print('Biggest step:', biggest_step)
                    #print('points', points)
                    #print('grad of points', grad)
                    #print('new_direction', new_direction)
                    #print('alpha', alpha)
                    #print('new_points', new_points)
                    pass
                points = new_points
                newton_iteration += 1
            new_points = points.reshape(points.shape[:len(indep_vals)] +
                                        (-1, points.shape[-1]))
            new_points = np.concatenate(
                (current_site_fractions[..., :dof], new_points), axis=-2)
            points_dict[name] = new_points

        if verbose:
            print('Rebuilding grid', end=' ')
        grid = calculate(dbf,
                         comps,
                         active_phases,
                         output='GM',
                         model=models,
                         callables=callable_dict,
                         fake_points=True,
                         points=points_dict,
                         **grid_opts)
        if verbose:
            print('[{0} points, {1}]'.format(len(grid.points),
                                             sizeof_fmt(grid.nbytes)),
                  end='\n')
        properties.attrs['iterations'] += 1

    # One last call to ensure 'properties' and 'grid' are consistent with one another
    lower_convex_hull(grid, properties)
    ravelled_X_view = grid['X'].values.view().reshape(
        -1, grid['X'].values.shape[-1])
    ravelled_Y_view = grid['Y'].values.view().reshape(
        -1, grid['Y'].values.shape[-1])
    ravelled_Phase_view = grid['Phase'].values.view().reshape(-1)
    # Copy final point values from the grid and drop the index array
    # For some reason direct construction doesn't work. We have to create empty and then assign.
    properties['X'] = xray.DataArray(
        np.empty_like(ravelled_X_view[properties['points'].values]),
        dims=properties['points'].dims + ('component', ))
    properties['X'].values[...] = ravelled_X_view[properties['points'].values]
    properties['Y'] = xray.DataArray(
        np.empty_like(ravelled_Y_view[properties['points'].values]),
        dims=properties['points'].dims + ('internal_dof', ))
    properties['Y'].values[...] = ravelled_Y_view[properties['points'].values]
    # TODO: What about invariant reactions? We should perform a final driving force calculation here.
    # We can handle that in the same post-processing step where we identify single-phase regions.
    properties['Phase'] = xray.DataArray(np.empty_like(
        ravelled_Phase_view[properties['points'].values]),
                                         dims=properties['points'].dims)
    properties['Phase'].values[...] = ravelled_Phase_view[
        properties['points'].values]
    del properties['points']
    return properties
Esempio n. 7
0
def equilibrium(dbf, comps, phases, conditions, **kwargs):
    """
    Calculate the equilibrium state of a system containing the specified
    components and phases, under the specified conditions.
    Model parameters are taken from 'dbf'.

    Parameters
    ----------
    dbf : Database
        Thermodynamic database containing the relevant parameters.
    comps : list
        Names of components to consider in the calculation.
    phases : list or dict
        Names of phases to consider in the calculation.
    conditions : dict or (list of dict)
        StateVariables and their corresponding value.
    verbose : bool, optional (Default: True)
        Show progress of calculations.
    grid_opts : dict, optional
        Keyword arguments to pass to the initial grid routine.

    Returns
    -------
    Structured equilibrium calculation.

    Examples
    --------
    None yet.
    """
    active_phases = unpack_phases(phases) or sorted(dbf.phases.keys())
    comps = sorted(comps)
    indep_vars = ['T', 'P']
    grid_opts = kwargs.pop('grid_opts', dict())
    verbose = kwargs.pop('verbose', True)
    phase_records = dict()
    callable_dict = kwargs.pop('callables', dict())
    grad_callable_dict = kwargs.pop('grad_callables', dict())
    points_dict = dict()
    maximum_internal_dof = 0
    # Construct models for each phase; prioritize user models
    models = unpack_kwarg(kwargs.pop('model', Model), default_arg=Model)
    if verbose:
        print('Components:', ' '.join(comps))
        print('Phases:', end=' ')
    for name in active_phases:
        mod = models[name]
        if isinstance(mod, type):
            models[name] = mod = mod(dbf, comps, name)
        variables = sorted(mod.energy.atoms(v.StateVariable).union(
            {key
             for key in conditions.keys() if key in [v.T, v.P]}),
                           key=str)
        site_fracs = sorted(mod.energy.atoms(v.SiteFraction), key=str)
        maximum_internal_dof = max(maximum_internal_dof, len(site_fracs))
        # Extra factor '1e-100...' is to work around an annoying broadcasting bug for zero gradient entries
        models[name].models['_broadcaster'] = 1e-100 * Mul(*variables)**3
        out = models[name].energy
        if name not in callable_dict:
            undefs = list(out.atoms(Symbol) - out.atoms(v.StateVariable))
            for undef in undefs:
                out = out.xreplace({undef: float(0)})
            # callable_dict takes variables in a different order due to calculate() pecularities
            callable_dict[name] = make_callable(
                out,
                sorted((key for key in conditions.keys() if key in [v.T, v.P]),
                       key=str) + site_fracs)
        if name not in grad_callable_dict:
            grad_func = make_callable(
                Matrix([out]).jacobian(variables), variables)
        else:
            grad_func = grad_callable_dict[name]
        # Adjust gradient by the approximate chemical potentials
        plane_vars = sorted(models[name].energy.atoms(v.SiteFraction), key=str)
        hyperplane = Add(*[
            v.MU(i) * mole_fraction(dbf.phases[name], comps, i) for i in comps
            if i != 'VA'
        ])
        # Workaround an annoying bug with zero gradient entries
        # This forces numerically zero entries to broadcast correctly
        hyperplane += 1e-100 * Mul(*([v.MU(i) for i in comps if i != 'VA'] +
                                     plane_vars + [v.T, v.P]))**3

        plane_grad = make_callable(
            Matrix([hyperplane]).jacobian(variables),
            [v.MU(i) for i in comps if i != 'VA'] + plane_vars + [v.T, v.P])
        plane_hess = make_callable(hessian(hyperplane, variables),
                                   [v.MU(i) for i in comps if i != 'VA'] +
                                   plane_vars + [v.T, v.P])
        phase_records[name.upper()] = PhaseRecord(variables=variables,
                                                  grad=grad_func,
                                                  plane_grad=plane_grad,
                                                  plane_hess=plane_hess)
        if verbose:
            print(name, end=' ')
    if verbose:
        print('[done]', end='\n')

    conds = OrderedDict((key, unpack_condition(value))
                        for key, value in sorted(conditions.items(), key=str))
    str_conds = OrderedDict((str(key), value) for key, value in conds.items())
    indep_vals = list([float(x) for x in np.atleast_1d(val)]
                      for key, val in str_conds.items() if key in indep_vars)
    components = [x for x in sorted(comps) if not x.startswith('VA')]
    # 'calculate' accepts conditions through its keyword arguments
    grid_opts.update(
        {key: value
         for key, value in str_conds.items() if key in indep_vars})
    if 'pdens' not in grid_opts:
        grid_opts['pdens'] = 10

    coord_dict = str_conds.copy()
    coord_dict['vertex'] = np.arange(len(components))
    grid_shape = np.meshgrid(*coord_dict.values(), indexing='ij',
                             sparse=False)[0].shape
    coord_dict['component'] = components
    if verbose:
        print('Computing initial grid', end=' ')

    grid = calculate(dbf,
                     comps,
                     active_phases,
                     output='GM',
                     model=models,
                     callables=callable_dict,
                     fake_points=True,
                     **grid_opts)

    if verbose:
        print('[{0} points, {1}]'.format(len(grid.points),
                                         sizeof_fmt(grid.nbytes)),
              end='\n')

    properties = xray.Dataset(
        {
            'NP': (list(str_conds.keys()) + ['vertex'], np.empty(grid_shape)),
            'GM': (list(str_conds.keys()), np.empty(grid_shape[:-1])),
            'MU':
            (list(str_conds.keys()) + ['component'], np.empty(grid_shape)),
            'points': (list(str_conds.keys()) + ['vertex'],
                       np.empty(grid_shape, dtype=np.int))
        },
        coords=coord_dict,
        attrs={'iterations': 1},
    )
    # Store the potentials from the previous iteration
    current_potentials = properties.MU.copy()

    for iteration in range(MAX_ITERATIONS):
        if verbose:
            print('Computing convex hull [iteration {}]'.format(
                properties.attrs['iterations']))
        # lower_convex_hull will modify properties
        lower_convex_hull(grid, properties)
        progress = np.abs(current_potentials - properties.MU).max().values
        if verbose:
            print('progress', progress)
        if progress < MIN_PROGRESS:
            if verbose:
                print('Convergence achieved')
            break
        current_potentials[...] = properties.MU.values
        if verbose:
            print('Refining convex hull')
        # Insert extra dimensions for non-T,P conditions so GM broadcasts correctly
        energy_broadcast_shape = grid.GM.values.shape[:len(indep_vals)] + \
            (1,) * (len(str_conds) - len(indep_vals)) + (grid.GM.values.shape[-1],)
        driving_forces = np.einsum('...i,...i',
                                   properties.MU.values[..., np.newaxis, :],
                                   grid.X.values[np.index_exp[...] +
                                                 (np.newaxis,) * (len(str_conds) - len(indep_vals)) +
                                                 np.index_exp[:, :]]) - \
            grid.GM.values.view().reshape(energy_broadcast_shape)

        for name in active_phases:
            dof = len(models[name].energy.atoms(v.SiteFraction))
            current_phase_indices = (grid.Phase.values == name
                                     ).reshape(energy_broadcast_shape[:-1] +
                                               (-1, ))
            # Broadcast to capture all conditions
            current_phase_indices = np.broadcast_arrays(
                current_phase_indices, np.empty(driving_forces.shape))[0]
            # This reshape is safe as long as phases have the same number of points at all indep. conditions
            current_phase_driving_forces = driving_forces[
                current_phase_indices].reshape(
                    current_phase_indices.shape[:-1] + (-1, ))
            # Note: This works as long as all points are in the same phase order for all T, P
            current_site_fractions = grid.Y.values[..., current_phase_indices[
                (0, ) * len(str_conds)], :]
            if np.sum(
                    current_site_fractions[(0, ) *
                                           len(indep_vals)][..., :dof]) == dof:
                # All site fractions are 1, aka zero internal degrees of freedom
                # Impossible to refine these points, so skip this phase
                points_dict[name] = current_site_fractions[
                    (0, ) * len(indep_vals)][..., :dof]
                continue
            # Find the N points with largest driving force for a given set of conditions
            # Remember that driving force has a sign, so we want the "most positive" values
            # N is the number of components, in this context
            # N points define a 'best simplex' for every set of conditions
            # We also need to restrict ourselves to one phase at a time
            trial_indices = np.argpartition(current_phase_driving_forces,
                                            -len(components),
                                            axis=-1)[..., -len(components):]
            trial_indices = trial_indices.ravel()
            statevar_indices = np.unravel_index(
                np.arange(
                    np.multiply.reduce(properties.GM.values.shape +
                                       (len(components), ))),
                properties.GM.values.shape +
                (len(components), ))[:len(indep_vals)]
            points = current_site_fractions[np.index_exp[statevar_indices +
                                                         (trial_indices, )]]
            points.shape = properties.points.shape[:-1] + (
                -1, maximum_internal_dof)
            # The Y arrays have been padded, so we should slice off the padding
            points = points[..., :dof]
            # Workaround for derivative issues at endmembers
            points[points == 0.] = MIN_SITE_FRACTION
            if len(points) == 0:
                if name in points_dict:
                    del points_dict[name]
                # No nearly stable points: skip this phase
                continue

            num_vars = len(phase_records[name].variables)
            plane_grad = phase_records[name].plane_grad
            plane_hess = phase_records[name].plane_hess
            statevar_grid = np.meshgrid(*itertools.chain(indep_vals),
                                        sparse=True,
                                        indexing='xy')
            # TODO: A more sophisticated treatment of constraints
            num_constraints = len(indep_vals) + len(
                dbf.phases[name].sublattices)
            constraint_jac = np.zeros((num_constraints, num_vars))
            # Independent variables are always fixed (in this limited implementation)
            for idx in range(len(indep_vals)):
                constraint_jac[idx, idx] = 1
            # This is for site fraction balance constraints
            var_idx = len(indep_vals)
            for idx in range(len(dbf.phases[name].sublattices)):
                active_in_subl = set(
                    dbf.phases[name].constituents[idx]).intersection(comps)
                constraint_jac[len(indep_vals) + idx,
                               var_idx:var_idx + len(active_in_subl)] = 1
                var_idx += len(active_in_subl)

            grad = phase_records[name].grad(
                *itertools.chain(statevar_grid, points.T))
            if grad.dtype == 'object':
                # Workaround a bug in zero gradient entries
                grad_zeros = np.zeros(points.T.shape[1:], dtype=np.float)
                for i in np.arange(grad.shape[0]):
                    if isinstance(grad[i], int):
                        grad[i] = grad_zeros
                grad = np.array(grad.tolist(), dtype=np.float)
            bcasts = np.broadcast_arrays(
                *itertools.chain(properties.MU.values.T, points.T))
            cast_grad = -plane_grad(*itertools.chain(bcasts, [0], [0]))
            cast_grad = cast_grad.T + grad.T
            grad = cast_grad
            grad.shape = grad.shape[:-1]  # Remove extraneous dimension
            # This Hessian is an approximation updated using the BFGS method
            # See Nocedal and Wright, ch.3, p. 198
            # Initialize as identity matrix
            hess = broadcast_to(np.eye(num_vars),
                                grad.shape + (grad.shape[-1], )).copy()
            newton_iteration = 0
            while newton_iteration < MAX_NEWTON_ITERATIONS:
                e_matrix = np.linalg.inv(hess)
                dy_unconstrained = -np.einsum('...ij,...j->...i', e_matrix,
                                              grad)
                proj_matrix = np.dot(e_matrix, constraint_jac.T)
                inv_matrix = np.rollaxis(np.dot(constraint_jac, proj_matrix),
                                         0, -1)
                inv_term = np.linalg.inv(inv_matrix)
                first_term = np.einsum('...ij,...jk->...ik', proj_matrix,
                                       inv_term)
                # Normally a term for the residual here
                # We only choose starting points which obey the constraints, so r = 0
                cons_summation = np.einsum('...i,...ji->...j',
                                           dy_unconstrained, constraint_jac)
                cons_correction = np.einsum('...ij,...j->...i', first_term,
                                            cons_summation)
                dy_constrained = dy_unconstrained - cons_correction
                # TODO: Support for adaptive changing independent variable steps
                new_direction = dy_constrained[..., len(indep_vals):]
                # Backtracking line search
                new_points = points + INITIAL_STEP_SIZE * new_direction
                alpha = np.full(new_points.shape[:-1],
                                INITIAL_STEP_SIZE,
                                dtype=np.float)
                negative_points = np.any(new_points < 0., axis=-1)
                while np.any(negative_points):
                    alpha[negative_points] *= 0.1
                    new_points = points + alpha[...,
                                                np.newaxis] * new_direction
                    negative_points = np.any(new_points < 0., axis=-1)
                # If we made "near" zero progress on any points, don't update the Hessian until
                # we've rebuilt the convex hull
                # Nocedal and Wright recommend against skipping Hessian updates
                # They recommend using a damped update approach, pp. 538-539 of their book
                # TODO: Check the projected gradient norm, not the step length
                if np.any(
                        np.max(np.abs(alpha[..., np.newaxis] * new_direction),
                               axis=-1) < MIN_STEP_LENGTH):
                    break
                # Workaround for derivative issues at endmembers
                new_points[new_points == 0.] = 1e-16
                # BFGS update to Hessian
                new_grad = phase_records[name].grad(
                    *itertools.chain(statevar_grid, new_points.T))
                if new_grad.dtype == 'object':
                    # Workaround a bug in zero gradient entries
                    grad_zeros = np.zeros(new_points.T.shape[1:],
                                          dtype=np.float)
                    for i in np.arange(new_grad.shape[0]):
                        if isinstance(new_grad[i], int):
                            new_grad[i] = grad_zeros
                    new_grad = np.array(new_grad.tolist(), dtype=np.float)
                bcasts = np.broadcast_arrays(
                    *itertools.chain(properties.MU.values.T, new_points.T))
                cast_grad = -plane_grad(*itertools.chain(bcasts, [0], [0]))
                cast_grad = cast_grad.T + new_grad.T
                new_grad = cast_grad
                new_grad.shape = new_grad.shape[:
                                                -1]  # Remove extraneous dimension
                # Notation used here consistent with Nocedal and Wright
                s_k = np.empty(points.shape[:-1] +
                               (points.shape[-1] + len(indep_vals), ))
                # Zero out independent variable changes for now
                s_k[..., :len(indep_vals)] = 0
                s_k[..., len(indep_vals):] = new_points - points
                y_k = new_grad - grad
                s_s_term = np.einsum('...j,...k->...jk', s_k, s_k)
                s_b_s_term = np.einsum('...i,...ij,...j', s_k, hess, s_k)
                y_y_y_s_term = np.einsum('...j,...k->...jk', y_k, y_k) / \
                    np.einsum('...i,...i', y_k, s_k)[..., np.newaxis, np.newaxis]
                update = np.einsum('...ij,...jk,...kl->...il', hess, s_s_term, hess) / \
                    s_b_s_term[..., np.newaxis, np.newaxis] + y_y_y_s_term
                hess = hess - update
                cast_hess = -plane_hess(
                    *itertools.chain(bcasts, [0], [0])).T + hess
                hess = -cast_hess  #TODO: Why does this fix things?
                # TODO: Verify that the chosen step lengths reduce the energy
                points = new_points
                grad = new_grad
                newton_iteration += 1
            new_points = new_points.reshape(
                new_points.shape[:len(indep_vals)] +
                (-1, new_points.shape[-1]))
            new_points = np.concatenate(
                (current_site_fractions[..., :dof], new_points), axis=-2)
            points_dict[name] = new_points

        if verbose:
            print('Rebuilding grid', end=' ')
        grid = calculate(dbf,
                         comps,
                         active_phases,
                         output='GM',
                         model=models,
                         callables=callable_dict,
                         fake_points=True,
                         points=points_dict,
                         **grid_opts)
        if verbose:
            print('[{0} points, {1}]'.format(len(grid.points),
                                             sizeof_fmt(grid.nbytes)),
                  end='\n')
        properties.attrs['iterations'] += 1

    # One last call to ensure 'properties' and 'grid' are consistent with one another
    lower_convex_hull(grid, properties)
    ravelled_X_view = grid['X'].values.view().reshape(
        -1, grid['X'].values.shape[-1])
    ravelled_Y_view = grid['Y'].values.view().reshape(
        -1, grid['Y'].values.shape[-1])
    ravelled_Phase_view = grid['Phase'].values.view().reshape(-1)
    # Copy final point values from the grid and drop the index array
    # For some reason direct construction doesn't work. We have to create empty and then assign.
    properties['X'] = xray.DataArray(
        np.empty_like(ravelled_X_view[properties['points'].values]),
        dims=properties['points'].dims + ('component', ))
    properties['X'].values[...] = ravelled_X_view[properties['points'].values]
    properties['Y'] = xray.DataArray(
        np.empty_like(ravelled_Y_view[properties['points'].values]),
        dims=properties['points'].dims + ('internal_dof', ))
    properties['Y'].values[...] = ravelled_Y_view[properties['points'].values]
    # TODO: What about invariant reactions? We should perform a final driving force calculation here.
    # We can handle that in the same post-processing step where we identify single-phase regions.
    properties['Phase'] = xray.DataArray(np.empty_like(
        ravelled_Phase_view[properties['points'].values]),
                                         dims=properties['points'].dims)
    properties['Phase'].values[...] = ravelled_Phase_view[
        properties['points'].values]
    del properties['points']
    return properties