Esempio n. 1
0
    def __init__(self,
                 structure,
                 workdir='.',
                 target_forces=1E-3,
                 waiting=False,
                 executable='vasp',
                 encut=1.3,
                 kp_grid=None,
                 kp_density=1E4,
                 relax_cell=True):

        Relaxator.__init__(self, target_forces)
        self.target_forces = target_forces
        self.waiting = waiting
        self.vaspjob = VaspJob(workdir=workdir, executable=executable)
        self.relaxed = False
        if kp_grid is not None:
            self.kpoints = KPoints(kmode='gamma', grid=kp_grid)
        else:
            self.kpoints = KPoints.optimized_grid(structure.lattice,
                                                  kp_density=kp_density)
        self.vaspjob.initialize(structure=structure, kpoints=self.kpoints)
        self.encut = encut
        self.relax_cell = relax_cell
        task_params = {
            'target_forces': self.target_forces,
            'encut': self.encut,
            'relax_cell': self.relax_cell
        }
        Task.__init__(self,
                      structure=structure,
                      task_params=task_params,
                      workdir=workdir,
                      executable=executable)
        self.stage = 1
Esempio n. 2
0
    def __init__(self, structure, workdir='.', target_forces=1E-3, executable='vasp',
                 encut=1.3, kp_grid=None, kp_density=1E4, relax_cell=True,
                 max_calls=10,pspdir='potpaw_PBE', psp_options=None, extra_vars=None, heterostructure=False):

        Relaxator.__init__(self, target_forces)
        self.target_forces = target_forces

        # If heterostructure is true it will keep the repeating order found
        # in the POSCAR. 
        # Added by Uthpala on Apr 20th, 2020.
        self.heterostructure = heterostructure 

        self.vaspjob = VaspJob(executable=executable, workdir=workdir)
        self.relaxed = False
        if kp_grid is not None:
            self.kpoints = KPoints(kmode='gamma', grid=kp_grid)
        else:
            self.kpoints = KPoints.optimized_grid(structure.lattice, kp_density=kp_density)
        self.vaspjob.initialize(structure=structure, kpoints=self.kpoints, pspdir=pspdir, heterostructure=self.heterostructure)
        self.vaspjob.potcar_setup = psp_options
        self.encut = encut
        self.relax_cell = relax_cell
        self.max_calls = max_calls
        self.pspdir = pspdir
        if extra_vars is not None:
            self.extra_vars = extra_vars
        else:
            self.extra_vars = {}

        

        task_params = {'target_forces': self.target_forces, 'encut': self.encut, 'relax_cell': self.relax_cell,
                       'max_calls': self.max_calls}
        Task.__init__(self, structure=structure, task_params=task_params, workdir=workdir, executable=executable)
Esempio n. 3
0
    def run(self):

        n = 10
        dftb = DFTBplus()
        kpoints = KPoints.optimized_grid(self.structure.lattice, kp_density=10000, force_odd=True)
        dftb.initialize(workdir=self.workdir, structure=self.structure, kpoints=kpoints)
        ans = dftb.set_slater_koster(search_paths=self.slater_path)
        if not ans:
            print('Slater-Koster files not complete')
            return

        grid = None
        energies = []

        while True:
            density = n ** 3
            kpoints = KPoints.optimized_grid(self.structure.lattice, kp_density=density, force_odd=True)
            if np.sum(grid) != np.sum(kpoints.grid):
                pcm_log.debug('Trial density: %d  Grid: %s' % (density, kpoints.grid))
                grid = list(kpoints.grid)
                dftb.kpoints = kpoints

                dftb.basic_input()
                dftb.hamiltonian['MaxSCCIterations'] = 50
                if os.path.isfile('charges.bin'):
                    dftb.hamiltonian['ReadInitialCharges'] = True
                dftb.hamiltonian['Mixer'] = {'name': 'DIIS'}
                dftb.set_static()
                dftb.set_inputs()
                dftb.run()
                if self.waiting:
                    dftb.runner.wait()
                while True:
                    if dftb.runner is not None and dftb.runner.poll() is not None:
                        pcm_log.info('Execution completed. Return code %d' % dftb.runner.returncode)
                        filename = dftb.workdir + os.sep + 'detailed.out'
                        if os.path.exists(filename):
                            ret = read_detailed_out(filename)
                            line = 'KPoint_grid= %15s  iSCC= %4d  Total_energy= %10.4f  SCC_error= %9.3E'
                            print(line % (grid, ret['SCC']['iSCC'], ret['total_energy'], ret['SCC']['SCC_error']))
                        else:
                            print('detailed.out could not be found, exiting...')
                            return
                        n += 2
                        energies.append(ret['total_energy'])
                        break
                    time.sleep(10)

                self.results.append({'kp_grid': grid,
                                     'iSCC': ret['SCC']['iSCC'],
                                     'Total_energy': ret['total_energy'],
                                     'SCC_error': ret['SCC']['SCC_error']})
            else:
                n += 2

            if len(energies) > 2 and abs(max(energies[-3:]) - min(energies[-3:])) < self.energy_tolerance:
                break
Esempio n. 4
0
    def __init__(self, structure, workdir='.', kpoints=None, executable='vasp', energy_tolerance=1E-3,
                 increment_factor=0.2, initial_encut=1.3, pspdir='potpaw_PBE', psp_options=None, extra_vars=None, heterostructure=False):
        
        self.structure = structure
        self.workdir = workdir
        self.executable = executable
        self.increment_factor = increment_factor
        self.initial_encut = initial_encut
        self.pspdir = pspdir
        if psp_options is not None:
            self.psp_options = psp_options
        else:
            self.psp_options = {}
        if extra_vars is not None:
            self.extra_vars = extra_vars
        else:
            self.extra_vars = {}
        if kpoints is None:
            kp = KPoints.optimized_grid(self.structure.lattice, kp_density=1E4, force_odd=True)
            self.kpoints = kp
        else:
            self.kpoints = kpoints

        # If heterostructure is true it will keep the repeating order found
        # in the POSCAR. 
        # Added by Uthpala on Apr 20th, 2020.
        self.heterostructure = heterostructure

        Convergence.__init__(self, energy_tolerance)
        self.task_params = {'energy_tolerance': self.energy_tolerance, 'increment_factor': self.increment_factor,
                            'initial_encut': self.initial_encut}
        Task.__init__(self, structure=structure, task_params=self.task_params, workdir=workdir, executable=executable)
Esempio n. 5
0
    def __init__(self,
                 structure,
                 workdir='.',
                 binary='vasp',
                 encut=1.3,
                 kpoints=None,
                 kp_density=1E4):

        self.encut = encut
        if kpoints is None:
            kp = KPoints.optimized_grid(structure.lattice,
                                        kp_density=kp_density,
                                        force_odd=True)
            self.kpoints = kp
        else:
            self.kpoints = kpoints
        self.task_params = {
            'encut': self.encut,
            'kpoints': self.kpoints.to_dict
        }
        Task.__init__(self,
                      structure=structure,
                      task_params=self.task_params,
                      workdir=workdir,
                      binary=binary)
Esempio n. 6
0
    def __init__(self,
                 structure,
                 relaxator_params=None,
                 workdir='.',
                 kpoints=None,
                 target_forces=1E-3,
                 waiting=False,
                 kp_density=10000,
                 forced=True):

        self.workdir = workdir
        self.initial_structure = structure
        self.slater_path = None
        self.symmetrize = False
        self.forced = forced
        if relaxator_params is None:
            relaxator_params = {'slater_path': '.'}

        self.set_params(relaxator_params)

        if self.symmetrize:
            self.initial_structure = symmetrize(structure)
        self.structure = self.initial_structure.copy()
        self.waiting = waiting
        if kpoints is None:
            self.kpoints = KPoints.optimized_grid(self.structure.lattice,
                                                  kp_density=kp_density)
        else:
            self.kpoints = kpoints

        Relaxator.__init__(self, target_forces)
Esempio n. 7
0
    def __init__(self,
                 structure,
                 workdir='.',
                 slater_path='.',
                 waiting=False,
                 energy_tolerance=1E-3,
                 output_file='results.json'):

        self.structure = structure
        self.workdir = workdir
        self.slater_path = slater_path
        self.waiting = waiting
        self.energy_tolerance = energy_tolerance
        if isinstance(slater_path, str):
            self.slater_path = [slater_path]
        self.results = []
        self.output_file = output_file

        dftb = DFTBplus(workdir=self.workdir)
        kpoints = KPoints.optimized_grid(self.structure.lattice,
                                         kp_density=10000,
                                         force_odd=True)
        dftb.initialize(structure=self.structure, kpoints=kpoints)
        ans = dftb.set_slater_koster(search_paths=self.slater_path)
        if not ans:
            print('Slater-Koster files not complete')
Esempio n. 8
0
    def __init__(self,
                 structure,
                 workdir='.',
                 binary='abinit',
                 ecut=50,
                 kpoints=None,
                 kp_density=1E4):

        self.ecut = ecut
        if kpoints is None:
            kp = KPoints.optimized_grid(structure.lattice,
                                        kp_density=kp_density,
                                        force_odd=True)
            self.kpoints = kp
        else:
            self.kpoints = kpoints
        self.task_params = {'ecut': self.ecut, 'kpoints': self.kpoints.to_dict}
        Task.__init__(self,
                      structure=structure,
                      task_params=self.task_params,
                      workdir=workdir,
                      binary=binary)
        self.abinitjob = AbinitJob()
        self.abinitjob.initialize(workdir=workdir,
                                  structure=structure,
                                  binary=binary)
Esempio n. 9
0
    def __init__(
        self,
        structure,
        workdir=".",
        kpoints=None,
        executable="vasp",
        energy_tolerance=1e-3,
        increment_factor=0.2,
        initial_encut=1.3,
        pspdir="potpaw_PBE",
        psp_options=None,
        extra_vars=None,
        heterostructure=False,
        make_potcar=True,
    ):

        self.structure = structure
        self.workdir = workdir
        self.executable = executable
        self.increment_factor = increment_factor
        self.initial_encut = initial_encut
        self.pspdir = pspdir
        if psp_options is not None:
            self.psp_options = psp_options
        else:
            self.psp_options = {}
        if extra_vars is not None:
            self.extra_vars = extra_vars
        else:
            self.extra_vars = {}
        if kpoints is None:
            kp = KPoints.optimized_grid(self.structure.lattice,
                                        kp_density=1e4,
                                        force_odd=True)
            self.kpoints = kp
        else:
            self.kpoints = kpoints

        # If heterostructure is true it will keep the repeating order found
        # in the POSCAR.
        # Added by Uthpala on Apr 20th, 2020.
        self.heterostructure = heterostructure

        # setting make_potcar=False will not generate a new POTCAR.
        # Added by Uthpala on May 12th, 2021.
        self.make_potcar = make_potcar

        Convergence.__init__(self, energy_tolerance)
        self.task_params = {
            "energy_tolerance": self.energy_tolerance,
            "increment_factor": self.increment_factor,
            "initial_encut": self.initial_encut,
        }
        Task.__init__(
            self,
            structure=structure,
            task_params=self.task_params,
            workdir=workdir,
            executable=executable,
        )
Esempio n. 10
0
    def __init__(self,
                 structure,
                 workdir='.',
                 kpoints=None,
                 binary='vasp',
                 energy_tolerance=1E-3,
                 increment_factor=0.2,
                 initial_encut=1.3):

        self.structure = structure
        self.workdir = workdir
        self.binary = binary
        self.increment_factor = increment_factor
        self.initial_encut = initial_encut
        if kpoints is None:
            kp = KPoints.optimized_grid(self.structure.lattice,
                                        kp_density=1E4,
                                        force_odd=True)
            self.kpoints = kp
        else:
            self.kpoints = kpoints
        Convergence.__init__(self, energy_tolerance)
        self.task_params = {
            'energy_tolerance': self.energy_tolerance,
            'increment_factor': self.increment_factor,
            'initial_encut': self.initial_encut
        }
        Task.__init__(self,
                      structure=structure,
                      task_params=self.task_params,
                      workdir=workdir,
                      binary=binary)
Esempio n. 11
0
 def initialize(self, structure, kpoints=None, kp_density=10000):
     assert structure.is_crystal
     assert structure.is_perfect
     self.structure = structure
     self.get_geometry()
     self.kp_density = kp_density
     if kpoints is None:
         kpoints = KPoints.optimized_grid(self.structure.lattice, kp_density=self.kp_density, force_odd=True)
     self.kpoints = kpoints
Esempio n. 12
0
    def best_kpoints(self):

        if not self.is_converge:
            print('Convergence not completed')
            return None
        else:
            kp = KPoints.optimized_grid(self.structure.lattice, kp_density=self.convergence_info[-3]['kp_density'],
                                        force_odd=True)
            return kp
Esempio n. 13
0
    def best_kpoints(self):

        if not self.is_converge:
            print('Convergence not completed')
            return None
        else:
            kp = KPoints.optimized_grid(self.structure.lattice, kp_density=self.convergence_info[-3]['kp_density'],
                                        force_odd=True)
            return kp
Esempio n. 14
0
 def load(self, filename=None):
     if filename is None:
         filename = self.workdir + os.sep + 'task.json'
     rf = open(filename)
     data = json.load(rf)
     rf.close()
     self.task_params = data['task_params']
     self.output = data['output']
     self.encut = self.task_params['encut']
     self.kpoints = KPoints.from_dict(self.task_params['kpoints'])
Esempio n. 15
0
 def load(self, filename=None):
     if filename is None:
         filename = self.workdir + os.sep + 'task.json'
     rf = open(filename)
     data = json.load(rf)
     rf.close()
     self.task_params = data['task_params']
     self.output = data['output']
     self.ecut = self.task_params['ecut']
     self.kpoints = KPoints.from_dict(self.task_params['kpoints'])
Esempio n. 16
0
 def initialize(self, structure, kpoints=None, kp_density=10000):
     assert structure.is_crystal
     assert structure.is_perfect
     self.structure = structure
     self.get_geometry()
     self.kp_density = kp_density
     if kpoints is None:
         kpoints = KPoints.optimized_grid(self.structure.lattice,
                                          kp_density=self.kp_density,
                                          force_odd=True)
     self.kpoints = kpoints
Esempio n. 17
0
    def __init__(self, structure, workdir='.', executable='vasp', encut=1.3, kpoints=None, kp_density=1E4,
                 extra_incar=None):

        self.encut = encut
        if kpoints is None:
            kp = KPoints.optimized_grid(structure.lattice, kp_density=kp_density, force_odd=True)
            self.kpoints = kp
        else:
            self.kpoints = kpoints
        self.task_params = {'encut': self.encut, 'kpoints': self.kpoints.to_dict, 'extra_incar': extra_incar}
        Task.__init__(self, structure=structure, task_params=self.task_params, workdir=workdir, executable=executable)
Esempio n. 18
0
    def __init__(self, structure, workdir='.', tolmxf=1E-4, tolrff=1E-2, waiting=False, executable='abinit',
                 ecut=50, kp_grid=None, kp_density=1E4, relax_cell=True, max_calls=10):

        Relaxator.__init__(self, tolmxf)
        self.tolmxf = tolmxf
        self.ecut = ecut
        self.waiting = waiting
        self.abinitjob = AbinitJob(workdir=workdir, executable=executable)
        self.relaxed = False
        self.tolmxf = tolmxf
        self.tolrff = tolrff
        if kp_grid is not None:
            self.kpoints = KPoints(kmode='gamma', grid=kp_grid)
        else:
            self.kpoints = KPoints.optimized_grid(structure.lattice, kp_density=kp_density)
        self.abinitjob.initialize(structure=structure)
        self.relax_cell = relax_cell
        self.max_calls = max_calls
        task_params = {'tolmxf': self.target_forces, 'ecut': self.ecut, 'relax_cell': self.relax_cell,
                       'max_calls': self.max_calls}
        Task.__init__(self, structure=structure, task_params=task_params, workdir=workdir, executable=executable)
Esempio n. 19
0
    def __init__(self, structure, workdir='.', binary='abinit', ecut=50, kpoints=None, kp_density=1E4):

        self.ecut = ecut
        if kpoints is None:
            kp = KPoints.optimized_grid(structure.lattice, kp_density=kp_density, force_odd=True)
            self.kpoints = kp
        else:
            self.kpoints = kpoints
        self.task_params = {'ecut': self.ecut, 'kpoints': self.kpoints.to_dict}
        Task.__init__(self, structure=structure, task_params=self.task_params, workdir=workdir, binary=binary)
        self.abinitjob = AbinitJob()
        self.abinitjob.initialize(workdir=workdir, structure=structure, binary=binary)
Esempio n. 20
0
 def initialize(self, structure, workdir='.', kpoints=None, binary='dftb+', kp_density=10000):
     assert structure.is_crystal
     assert structure.is_perfect
     self.structure = structure
     self.get_geometry()
     self.workdir = workdir
     if not os.path.lexists(workdir):
         os.mkdir(workdir)
     self.binary = binary
     self.kp_density = kp_density
     if kpoints is None:
         kpoints = KPoints.optimized_grid(self.structure.lattice, kp_density=self.kp_density, force_odd=True)
     self.kpoints = kpoints
Esempio n. 21
0
    def __init__(self, structure, workdir, slater_path, waiting=False, kpoints=None, output_file='results.json',
                 max_scc_iterations=50):

        self.structure = structure
        self.workdir = workdir
        self.slater_path = slater_path
        self.waiting = waiting
        self.MaxSCCIterations = max_scc_iterations
        if isinstance(slater_path, str):
            self.slater_path = [slater_path]
        self.results = []
        self.output_file = output_file
        if kpoints is None:
            self.kpoints = KPoints.optimized_grid(self.structure.lattice, kp_density=10000, force_odd=True)
        else:
            self.kpoints = kpoints
Esempio n. 22
0
    def __init__(self, structure, workdir, slater_path, waiting=False, kpoints=None, output_file='results.json',
                 max_scc_iterations=50):

        self.structure = structure
        self.workdir = workdir
        self.slater_path = slater_path
        self.waiting = waiting
        self.MaxSCCIterations = max_scc_iterations
        if isinstance(slater_path, str):
            self.slater_path = [slater_path]
        self.results = []
        self.output_file = output_file
        if kpoints is None:
            self.kpoints = KPoints.optimized_grid(self.structure.lattice, kp_density=10000, force_odd=True)
        else:
            self.kpoints = kpoints
Esempio n. 23
0
    def __init__(self, structure, workdir='.', kpoints=None, binary='vasp', energy_tolerance=1E-3,
                 increment_factor=0.2, initial_encut=1.3):

        self.structure = structure
        self.workdir = workdir
        self.binary = binary
        self.increment_factor = increment_factor
        self.initial_encut = initial_encut
        if kpoints is None:
            kp = KPoints.optimized_grid(self.structure.lattice, kp_density=1E4, force_odd=True)
            self.kpoints = kp
        else:
            self.kpoints = kpoints
        Convergence.__init__(self, energy_tolerance)
        self.task_params = {'energy_tolerance': self.energy_tolerance, 'increment_factor': self.increment_factor,
                            'initial_encut': self.initial_encut}
        Task.__init__(self, structure=structure, task_params=self.task_params, workdir=workdir, binary=binary)
Esempio n. 24
0
    def __init__(self, structure, workdir='.', target_forces=1E-3, waiting=False, binary='vasp',
                 encut=1.3, kp_grid=None, kp_density=1E4, relax_cell=True):

        Relaxator.__init__(self, target_forces)
        self.target_forces = target_forces
        self.waiting = waiting
        self.vaspjob = VaspJob()
        self.relaxed = False
        if kp_grid is not None:
            self.kpoints = KPoints(kmode='gamma', grid=kp_grid)
        else:
            self.kpoints = KPoints.optimized_grid(structure.lattice, kp_density=kp_density)
        self.vaspjob.initialize(workdir=workdir, structure=structure, kpoints=self.kpoints, binary=binary)
        self.encut = encut
        self.relax_cell = relax_cell
        task_params = {'target_forces': self.target_forces, 'encut': self.encut, 'relax_cell': self.relax_cell}
        Task.__init__(self, structure=structure, task_params=task_params, workdir=workdir, binary=binary)
        self.stage = 1
Esempio n. 25
0
 def prepare_folder(self, entry_id, workdir, binary='vasp', source_dir='.'):
     vj = VaspJob()
     structure = self.get_structure(entry_id)
     kp = KPoints.optimized_grid(structure.lattice, kp_density=2E4)
     vj.initialize(structure, workdir=workdir, kpoints=kp, binary=binary)
     vj.clean()
     vj.input_variables = read_incar(source_dir + '/INCAR')
     magmom_sph = self.get_entry(entry_id, {'properties.magmom': 1})['properties']['magmom']
     magmom_car = spherical_to_cartesian(magmom_sph)
     vj.input_variables.variables['MAGMOM'] = [float(x) for x in magmom_car.flatten()]
     vj.input_variables.variables['M_CONSTR'] = [float(x) for x in magmom_car.flatten()]
     vj.input_variables.variables['IBRION'] = -1
     vj.input_variables.variables['LWAVE'] = True
     vj.input_variables.variables['EDIFF'] = 1E-5
     vj.input_variables.variables['LAMBDA'] = 10
     vj.input_variables.variables['NSW'] = 0
     vj.input_variables.variables['I_CONSTRAINED_M'] = 1
     vj.set_inputs()
Esempio n. 26
0
    def __init__(self, structure, workdir='.', slater_path='.', waiting=False, energy_tolerance=1E-3,
                 output_file='results.json'):

        self.structure = structure
        self.workdir = workdir
        self.slater_path = slater_path
        self.waiting = waiting
        self.energy_tolerance = energy_tolerance
        if isinstance(slater_path, str):
            self.slater_path = [slater_path]
        self.results = []
        self.output_file = output_file

        dftb = DFTBplus()
        kpoints = KPoints.optimized_grid(self.structure.lattice, kp_density=10000, force_odd=True)
        dftb.initialize(workdir=self.workdir, structure=self.structure, kpoints=kpoints)
        ans = dftb.set_slater_koster(search_paths=self.slater_path)
        if not ans:
            print('Slater-Koster files not complete')
Esempio n. 27
0
 def create_inputs(self, kp_density=10000, encut=1.0):
     # kpoints = KPoints(kmode='gamma', grid=[4, 4, 4])
     for entry in self.population.pcdb.entries.find():
         name = str(entry['_id'])
         workdir = self.basedir + os.sep + name
         structure = self.population.db.get_structure(entry['_id'])
         kpoints = KPoints.optimized_grid(structure.lattice, kp_density=kp_density)
         print(kpoints)
         vj = VaspJob()
         vj.initialize(workdir=workdir, structure=structure, kpoints=kpoints)
         inp = InputVariables()
         inp.set_rough_relaxation()
         vj.set_input_variables(inp)
         vj.write_potcar()
         vj.input_variables.set_encut(ENCUT=encut, POTCAR=workdir + os.sep + 'POTCAR')
         vj.set_inputs()
         self.vasp_jobs[name] = vj
         self.runs[name] = 0
         self.status[name] = ['ACTIVE']
Esempio n. 28
0
    def __init__(self, structure, workdir='.', tolmxf=1E-4, tolrff=1E-2, waiting=False, binary='abinit',
                 ecut=50, kp_grid=None, kp_density=1E4, relax_cell=True, max_calls=10):

        Relaxator.__init__(self, tolmxf)
        self.tolmxf = tolmxf
        self.ecut = ecut
        self.waiting = waiting
        self.abinitjob = AbinitJob()
        self.relaxed = False
        if kp_grid is not None:
            self.kpoints = KPoints(kmode='gamma', grid=kp_grid)
        else:
            self.kpoints = KPoints.optimized_grid(structure.lattice, kp_density=kp_density)
        self.abinitjob.initialize(workdir=workdir, structure=structure, binary=binary)
        self.relax_cell = relax_cell
        self.max_calls = max_calls
        task_params = {'tolmxf': self.target_forces, 'ecut': self.ecut, 'relax_cell': self.relax_cell,
                       'max_calls': self.max_calls}
        Task.__init__(self, structure=structure, task_params=task_params, workdir=workdir, binary=binary)
Esempio n. 29
0
 def create_inputs(self, kp_density=10000, encut=1.0):
     # kpoints = KPoints(kmode='gamma', grid=[4, 4, 4])
     for entry in self.population.pcdb.entries.find():
         name = str(entry['_id'])
         workdir = self.basedir + os.sep + name
         structure = self.population.db.get_structure(entry['_id'])
         kpoints = KPoints.optimized_grid(structure.lattice,
                                          kp_density=kp_density)
         print(kpoints)
         vj = VaspJob(workdir=workdir)
         vj.initialize(structure=structure, kpoints=kpoints)
         inp = VaspInput()
         inp.set_rough_relaxation()
         vj.set_input_variables(inp)
         vj.write_potcar()
         vj.input_variables.set_encut(ENCUT=encut,
                                      POTCAR=workdir + os.sep + 'POTCAR')
         vj.set_inputs()
         self.vasp_jobs[name] = vj
         self.runs[name] = 0
         self.status[name] = ['ACTIVE']
Esempio n. 30
0
    def __init__(self, structure, relaxator_params=None, workdir='.', kpoints=None, target_forces=1E-3, waiting=False,
                 kp_density=10000, forced=True):

        self.workdir = workdir
        self.initial_structure = structure
        self.slater_path = None
        self.symmetrize = False
        self.forced = forced
        if relaxator_params is None:
            relaxator_params = {'slater_path': '.'}

        self.set_params(relaxator_params)

        if self.symmetrize:
            self.initial_structure = symmetrize(structure)
        self.structure = self.initial_structure.copy()
        self.waiting = waiting
        if kpoints is None:
            self.kpoints = KPoints.optimized_grid(self.structure.lattice, kp_density=kp_density)
        else:
            self.kpoints = kpoints

        Relaxator.__init__(self, target_forces)
Esempio n. 31
0
    def run(self, nparal=4):

        self.started = True
        vj = VaspJob()
        kp = KPoints()
        vj.initialize(self.structure, self.workdir, kp, binary=self.binary)
        grid = None
        energies = []
        if not self.is_converge:
            n = self.initial_number
        else:
            n = self.convergence_info[-3]['kp_n']
        self.convergence_info = []
        while True:
            density = n ** 3
            kp = KPoints.optimized_grid(self.structure.lattice, kp_density=density, force_odd=True)
            pcm_log.debug('Trial density: %d  Grid: %s' % (density, kp.grid))
            if np.sum(grid) != np.sum(kp.grid):
                grid = kp.grid
                vj.set_kpoints(kp)
                vj.clean()
                vj.job_static()
                vj.input_variables.set_density_for_restart()
                vj.input_variables.set_encut(ENCUT=self.encut, POTCAR=self.workdir + os.sep + 'POTCAR')
                vj.input_variables.variables['NBANDS'] = nparal * ((30 + self.structure.valence_electrons()) /
                                                                   nparal + 1)
                vj.input_variables.set_ismear(kp)
                vj.input_variables.variables['SIGMA'] = 0.2
                vj.input_variables.variables['ISPIN'] = 2
                vj.set_inputs()
                vj.run(use_mpi=True, mpi_num_procs=nparal)
                while True:
                    energy_str = ''
                    filename = self.workdir + os.sep + 'vasp_stdout.log'
                    if os.path.exists(filename):
                        vasp_stdout = read_vasp_stdout(filename=filename)
                        if len(vasp_stdout['data']) > 2:
                            scf_energies = [i[2] for i in vasp_stdout['data']]
                            energy_str = ' %7.3f' % scf_energies[1]
                            for i in range(1, len(scf_energies)):
                                if scf_energies[i] < scf_energies[i - 1]:
                                    energy_str += ' >'
                                else:
                                    energy_str += ' <'
                            pcm_log.debug(energy_str)

                    if vj.runner is not None and vj.runner.poll() is not None:
                        filename = self.workdir + os.sep + 'vasp_stdout.log'
                        if os.path.exists(filename):
                            vasp_stdout = read_vasp_stdout(filename=filename)
                            if len(vasp_stdout['data']) > 2:
                                scf_energies = [i[2] for i in vasp_stdout['data']]
                                energy_str += ' %7.3f' % scf_energies[-1]
                                pcm_log.debug(energy_str)
                        break
                    time.sleep(5)
                vj.get_outputs()
                energy = vj.outcar.final_data['energy']['free_energy']
                energies.append(energy)
                print('kp_density= %10d kp_grid= %15s free_energy= %9.6f' % (density, grid, energy))
                self.convergence_info.append({'free_energy': vj.outcar.final_data['energy']['free_energy'],
                                              'kp_grid': list(grid),
                                              'kp_density': density,
                                              'kp_n': n})
                if len(energies) > 2 and abs(max(energies[-3:]) - min(energies[-3:])) < self.energy_tolerance:
                    self.success = True
                    break
            n += 2
        self.output = {'convergence': self.convergence_info, 'best_kp_grid': list(grid)}
        self.finished = True
Esempio n. 32
0
    def run(self, nparal=4):

        self.started = True

        vj = VaspJob(workdir=self.workdir, executable=self.executable)
        vj.potcar_setup = self.psp_options
        kp = KPoints()
        vj.initialize(
            structure=self.structure,
            kpoints=kp,
            pspdir=self.pspdir,
            heterostructure=self.heterostructure,
            make_potcar=self.make_potcar,
        )
        grid = None
        energies = []
        if not self.is_converge:
            n = self.initial_number
        else:
            n = self.convergence_info[-3]["kp_n"]
        self.convergence_info = []
        while True:
            density = n**3
            kp = KPoints.optimized_grid(self.structure.lattice,
                                        kp_density=density,
                                        force_odd=True)
            pcm_log.debug("Trial density: %d  Grid: %s" % (density, kp.grid))
            if np.sum(grid) != np.sum(kp.grid):
                grid = kp.grid
                vj.set_kpoints(kp)
                vj.clean()
                vj.job_static()
                vj.input_variables.set_density_for_restart()
                vj.input_variables.set_encut(ENCUT=self.encut,
                                             POTCAR=self.workdir + os.sep +
                                             "POTCAR")
                vj.input_variables.variables["NBANDS"] = nparal * (
                    (30 + self.structure.valence_electrons()) // nparal + 1)
                vj.input_variables.set_ismear(kp)
                vj.input_variables.variables["SIGMA"] = 0.2
                vj.input_variables.variables["ISPIN"] = 2
                for i in self.extra_vars:
                    vj.input_variables[i] = self.extra_vars[i]
                vj.set_inputs()
                vj.run(mpi_num_procs=nparal)
                while True:
                    energy_str = ""
                    filename = self.workdir + os.sep + "vasp_stdout.log"
                    if os.path.exists(filename):
                        vasp_stdout = read_vasp_stdout(filename=filename)
                        if len(vasp_stdout["data"]) > 2:
                            scf_energies = [i[2] for i in vasp_stdout["data"]]
                            energy_str = " %7.3f" % scf_energies[1]
                            for i in range(1, len(scf_energies)):
                                if scf_energies[i] < scf_energies[i - 1]:
                                    energy_str += " >"
                                else:
                                    energy_str += " <"
                            pcm_log.debug(energy_str)

                    if vj.runner is not None and vj.runner.poll() is not None:
                        filename = self.workdir + os.sep + "vasp_stdout.log"
                        if os.path.exists(filename):
                            vasp_stdout = read_vasp_stdout(filename=filename)
                            if len(vasp_stdout["data"]) > 2:
                                scf_energies = [
                                    i[2] for i in vasp_stdout["data"]
                                ]
                                energy_str += " %7.3f" % scf_energies[-1]
                                pcm_log.debug(energy_str)
                        break
                    time.sleep(5)
                vj.get_outputs()
                energy = (vj.outcar.final_data["energy"]["free_energy"] /
                          self.structure.natom)
                energies.append(energy)
                print("kp_density= %10d kp_grid= %15s free_energy= %9.6f" %
                      (density, grid, energy))
                self.convergence_info.append({
                    "free_energy":
                    vj.outcar.final_data["energy"]["free_energy"] /
                    self.structure.natom,
                    "kp_grid":
                    list(grid),
                    "kp_density":
                    density,
                    "kp_n":
                    n,
                })
                if (len(energies) > 2
                        and abs(max(energies[-3:]) - min(energies[-3:])) <
                        self.energy_tolerance):
                    self.success = True
                    break
            n += 2
        self.output = {
            "convergence": self.convergence_info,
            "best_kp_grid": list(self.best_kpoints.grid),
        }
        self.finished = True
Esempio n. 33
0
    def __init__(
        self,
        structure,
        workdir=".",
        target_forces=1e-3,
        executable="vasp",
        encut=1.3,
        kp_grid=None,
        kp_density=1e4,
        relax_cell=True,
        max_calls=10,
        pspdir="potpaw_PBE",
        psp_options=None,
        extra_vars=None,
        heterostructure=False,
        make_potcar=True,
        auto_ibrion=False,
        fire=False,
    ):

        Relaxator.__init__(self, target_forces)
        self.target_forces = target_forces

        # If heterostructure is true it will keep the repeating order found
        # in the POSCAR.
        # Added by Uthpala on Apr 20th, 2020.
        self.heterostructure = heterostructure

        # setting make_potcar=False will not generate a new POTCAR.
        # Added by Uthpala on May 12th, 2021.
        self.make_potcar = make_potcar

        # Turn on adaptive IBRION update.
        self.auto_ibrion = auto_ibrion

        # Use FIRE algorithm for relaxation.
        # Requires VTST Tools
        self.fire = fire

        self.vaspjob = VaspJob(executable=executable, workdir=workdir)
        self.relaxed = False
        if kp_grid is not None:
            self.kpoints = KPoints(kmode="gamma", grid=kp_grid)
        else:
            self.kpoints = KPoints.optimized_grid(structure.lattice,
                                                  kp_density=kp_density)
        self.vaspjob.initialize(
            structure=structure,
            kpoints=self.kpoints,
            pspdir=pspdir,
            heterostructure=self.heterostructure,
            make_potcar=self.make_potcar,
        )
        self.vaspjob.potcar_setup = psp_options
        self.encut = encut
        self.relax_cell = relax_cell
        self.max_calls = max_calls
        self.pspdir = pspdir
        if extra_vars is not None:
            self.extra_vars = extra_vars
        else:
            self.extra_vars = {}

        task_params = {
            "target_forces": self.target_forces,
            "encut": self.encut,
            "relax_cell": self.relax_cell,
            "max_calls": self.max_calls,
        }
        Task.__init__(
            self,
            structure=structure,
            task_params=task_params,
            workdir=workdir,
            executable=executable,
        )
Esempio n. 34
0
    def run(self, nparal=4):

        self.started = True

        vj = VaspJob(workdir=self.workdir, executable=self.executable)
        vj.potcar_setup = self.psp_options
        kp = KPoints()
        vj.initialize(structure=self.structure, kpoints=kp, pspdir=self.pspdir, heterostructure=self.heterostructure)
        grid = None
        energies = []
        if not self.is_converge:
            n = self.initial_number
        else:
            n = self.convergence_info[-3]['kp_n']
        self.convergence_info = []
        while True:
            density = n ** 3
            kp = KPoints.optimized_grid(self.structure.lattice, kp_density=density, force_odd=True)
            pcm_log.debug('Trial density: %d  Grid: %s' % (density, kp.grid))
            if np.sum(grid) != np.sum(kp.grid):
                grid = kp.grid
                vj.set_kpoints(kp)
                vj.clean()
                vj.job_static()
                vj.input_variables.set_density_for_restart()
                vj.input_variables.set_encut(ENCUT=self.encut, POTCAR=self.workdir + os.sep + 'POTCAR')
                vj.input_variables.variables['NBANDS'] = nparal * ((30 + self.structure.valence_electrons()) //
                                                                   nparal + 1)
                vj.input_variables.set_ismear(kp)
                vj.input_variables.variables['SIGMA'] = 0.2
                vj.input_variables.variables['ISPIN'] = 2
                for i in self.extra_vars:
                    vj.input_variables[i] = self.extra_vars[i]
                vj.set_inputs()
                vj.run(mpi_num_procs=nparal)
                while True:
                    energy_str = ''
                    filename = self.workdir + os.sep + 'vasp_stdout.log'
                    if os.path.exists(filename):
                        vasp_stdout = read_vasp_stdout(filename=filename)
                        if len(vasp_stdout['data']) > 2:
                            scf_energies = [i[2] for i in vasp_stdout['data']]
                            energy_str = ' %7.3f' % scf_energies[1]
                            for i in range(1, len(scf_energies)):
                                if scf_energies[i] < scf_energies[i - 1]:
                                    energy_str += ' >'
                                else:
                                    energy_str += ' <'
                            pcm_log.debug(energy_str)

                    if vj.runner is not None and vj.runner.poll() is not None:
                        filename = self.workdir + os.sep + 'vasp_stdout.log'
                        if os.path.exists(filename):
                            vasp_stdout = read_vasp_stdout(filename=filename)
                            if len(vasp_stdout['data']) > 2:
                                scf_energies = [i[2] for i in vasp_stdout['data']]
                                energy_str += ' %7.3f' % scf_energies[-1]
                                pcm_log.debug(energy_str)
                        break
                    time.sleep(5)
                vj.get_outputs()
                energy = vj.outcar.final_data['energy']['free_energy']/self.structure.natom
                energies.append(energy)
                print('kp_density= %10d kp_grid= %15s free_energy= %9.6f' % (density, grid, energy))
                self.convergence_info.append({'free_energy': vj.outcar.final_data['energy']['free_energy']/self.structure.natom,
                                              'kp_grid': list(grid),
                                              'kp_density': density,
                                              'kp_n': n})
                if len(energies) > 2 and abs(max(energies[-3:]) - min(energies[-3:])) < self.energy_tolerance:
                    self.success = True
                    break
            n += 2
        self.output = {'convergence': self.convergence_info, 'best_kp_grid': list(self.best_kpoints.grid)}
        self.finished = True