Esempio n. 1
0
def time_model():
    """Times a model."""
    assert cfg.PREC_TIME.ENABLED, "PREC_TIME.ENABLED must be set."
    # Setup training/testing environment
    setup_env()
    # Construct the model and loss_fun
    model = setup_model()
    loss_fun = builders.build_loss_fun().cuda()
    # Compute precise time
    logger.info("Computing precise time...")
    prec_time = net.compute_precise_time(model, loss_fun)
    logger.info(logging.dump_json_stats(prec_time))
    net.reset_bn_stats(model)
Esempio n. 2
0
def train_model():
    """Trains the model."""
    # Setup training/testing environment
    setup_env()
    # Construct the model, loss_fun, and optimizer
    model = setup_model()
    loss_fun = builders.build_loss_fun().cuda()
    optimizer = optim.construct_optimizer(model)
    # Load checkpoint or initial weights
    start_epoch = 0
    if cfg.TRAIN.AUTO_RESUME and checkpoint.has_checkpoint():
        last_checkpoint = checkpoint.get_last_checkpoint()
        checkpoint_epoch = checkpoint.load_checkpoint(last_checkpoint, model,
                                                      optimizer)
        logger.info("Loaded checkpoint from: {}".format(last_checkpoint))
        start_epoch = checkpoint_epoch + 1
    elif cfg.TRAIN.WEIGHTS:
        checkpoint.load_checkpoint(cfg.TRAIN.WEIGHTS, model)
        logger.info("Loaded initial weights from: {}".format(
            cfg.TRAIN.WEIGHTS))
    # Compute precise time
    if start_epoch == 0 and cfg.PREC_TIME.ENABLED:
        logger.info("Computing precise time...")
        prec_time = net.compute_precise_time(model, loss_fun)
        logger.info(logging.dump_json_stats(prec_time))
        net.reset_bn_stats(model)
    # Create data loaders and meters
    train_loader = loader.construct_train_loader()
    test_loader = loader.construct_test_loader()
    train_meter = meters.TrainMeter(len(train_loader))
    test_meter = meters.TestMeter(len(test_loader))
    # Perform the training loop
    logger.info("Start epoch: {}".format(start_epoch + 1))
    for cur_epoch in range(start_epoch, cfg.OPTIM.MAX_EPOCH):
        # Train for one epoch
        train_epoch(train_loader, model, loss_fun, optimizer, train_meter,
                    cur_epoch)
        # Compute precise BN stats
        if cfg.BN.USE_PRECISE_STATS:
            net.compute_precise_bn_stats(model, train_loader)
        # Save a checkpoint
        if (cur_epoch + 1) % cfg.TRAIN.CHECKPOINT_PERIOD == 0:
            checkpoint_file = checkpoint.save_checkpoint(
                model, optimizer, cur_epoch)
            logger.info("Wrote checkpoint to: {}".format(checkpoint_file))
        # Evaluate the model
        next_epoch = cur_epoch + 1
        if next_epoch % cfg.TRAIN.EVAL_PERIOD == 0 or next_epoch == cfg.OPTIM.MAX_EPOCH:
            test_epoch(test_loader, model, test_meter, cur_epoch)
Esempio n. 3
0
def test_model():
    """Evaluates the model."""

    # Setup logging
    logging.setup_logging()
    # Show the config
    logger.info("Config:\n{}".format(cfg))

    # Fix the RNG seeds (see RNG comment in core/config.py for discussion)
    np.random.seed(cfg.RNG_SEED)
    torch.manual_seed(cfg.RNG_SEED)
    # Configure the CUDNN backend
    torch.backends.cudnn.benchmark = cfg.CUDNN.BENCHMARK

    # Build the model (before the loaders to speed up debugging)
    model = builders.build_model()
    logger.info("Model:\n{}".format(model))
    logger.info(logging.dump_json_stats(net.complexity(model)))

    # Compute precise time
    if cfg.PREC_TIME.ENABLED:
        logger.info("Computing precise time...")
        loss_fun = builders.build_loss_fun()
        prec_time = net.compute_precise_time(model, loss_fun)
        logger.info(logging.dump_json_stats(prec_time))
        net.reset_bn_stats(model)

    # Load model weights
    checkpoint.load_checkpoint(cfg.TEST.WEIGHTS, model)
    logger.info("Loaded model weights from: {}".format(cfg.TEST.WEIGHTS))

    # Create data loaders
    test_loader = loader.construct_test_loader()

    # Create meters
    test_meter = meters.TestMeter(len(test_loader))

    # Evaluate the model
    test_epoch(test_loader, model, test_meter, 0)
Esempio n. 4
0
def train_model():
    """Trains the model."""

    # Setup logging
    logging.setup_logging()
    # Show the config
    logger.info("Config:\n{}".format(cfg))

    # Fix the RNG seeds (see RNG comment in core/config.py for discussion)
    np.random.seed(cfg.RNG_SEED)
    torch.manual_seed(cfg.RNG_SEED)
    # Configure the CUDNN backend
    torch.backends.cudnn.benchmark = cfg.CUDNN.BENCHMARK

    # Build the model (before the loaders to speed up debugging)
    model = builders.build_model()
    logger.info("Model:\n{}".format(model))
    logger.info(logging.dump_json_stats(net.complexity(model)))

    # Define the loss function
    loss_fun = builders.build_loss_fun()
    # Construct the optimizer
    optimizer = optim.construct_optimizer(model)

    # Load checkpoint or initial weights
    start_epoch = 0
    if cfg.TRAIN.AUTO_RESUME and checkpoint.has_checkpoint():
        last_checkpoint = checkpoint.get_last_checkpoint()
        checkpoint_epoch = checkpoint.load_checkpoint(last_checkpoint, model,
                                                      optimizer)
        logger.info("Loaded checkpoint from: {}".format(last_checkpoint))
        start_epoch = checkpoint_epoch + 1
    elif cfg.TRAIN.WEIGHTS:
        checkpoint.load_checkpoint(cfg.TRAIN.WEIGHTS, model)
        logger.info("Loaded initial weights from: {}".format(
            cfg.TRAIN.WEIGHTS))

    # Compute precise time
    if start_epoch == 0 and cfg.PREC_TIME.ENABLED:
        logger.info("Computing precise time...")
        prec_time = net.compute_precise_time(model, loss_fun)
        logger.info(logging.dump_json_stats(prec_time))
        net.reset_bn_stats(model)

    # Create data loaders
    train_loader = loader.construct_train_loader()
    test_loader = loader.construct_test_loader()

    # Create meters
    train_meter = meters.TrainMeter(len(train_loader))
    test_meter = meters.TestMeter(len(test_loader))

    # Perform the training loop
    logger.info("Start epoch: {}".format(start_epoch + 1))

    for cur_epoch in range(start_epoch, cfg.OPTIM.MAX_EPOCH):
        # Train for one epoch
        train_epoch(train_loader, model, loss_fun, optimizer, train_meter,
                    cur_epoch)
        # Compute precise BN stats
        if cfg.BN.USE_PRECISE_STATS:
            net.compute_precise_bn_stats(model, train_loader)
        # Save a checkpoint
        if checkpoint.is_checkpoint_epoch(cur_epoch):
            checkpoint_file = checkpoint.save_checkpoint(
                model, optimizer, cur_epoch)
            logger.info("Wrote checkpoint to: {}".format(checkpoint_file))
        # Evaluate the model
        if is_eval_epoch(cur_epoch):
            test_epoch(test_loader, model, test_meter, cur_epoch)