Esempio n. 1
0
 def _legion_state(self, inputs, t, argv):
     """!
     @brief Returns new values of excitatory and inhibitory parts of oscillator and potential of oscillator.
     
     @param[in] inputs (list): Initial values (current) of oscillator [excitatory, inhibitory, potential].
     @param[in] t (double): Current time of simulation.
     @param[in] argv (uint): Extra arguments that are not used for integration - index of oscillator.
     
     @return (list) New values of excitatoty and inhibitory part of oscillator and new value of potential (not assign).
     
     """
     
     index = argv;
     
     x = inputs[0];  # excitatory
     y = inputs[1];  # inhibitory
     p = inputs[2];  # potential
     
     potential_influence = heaviside(p + math.exp(-self._params.alpha * t) - self._params.teta);
     
     dx = 3.0 * x - x ** 3.0 + 2.0 - y + self._stimulus[index] * potential_influence + self._coupling_term[index] + self._noise[index];
     dy = self._params.eps * (self._params.gamma * (1.0 + math.tanh(x / self._params.betta)) - y);
     
     neighbors = self.get_neighbors(index);
     potential = 0.0;
     
     for index_neighbor in neighbors:
         potential += self._params.T * heaviside(self._excitatory[index_neighbor] - self._params.teta_x);
     
     dp = self._params.lamda * (1.0 - p) * heaviside(potential - self._params.teta_p) - self._params.mu * p;
     
     return [dx, dy, dp];
Esempio n. 2
0
 def _legion_state(self, inputs, t, argv):
     """!
     @brief Returns new values of excitatory and inhibitory parts of oscillator and potential of oscillator.
     
     @param[in] inputs (list): Initial values (current) of oscillator [excitatory, inhibitory, potential].
     @param[in] t (double): Current time of simulation.
     @param[in] argv (uint): Extra arguments that are not used for integration - index of oscillator.
     
     @return (list) New values of excitatoty and inhibitory part of oscillator and new value of potential (not assign).
     
     """
     
     index = argv;
     
     x = inputs[0];  # excitatory
     y = inputs[1];  # inhibitory
     p = inputs[2];  # potential
     
     potential_influence = heaviside(p + math.exp(-self._params.alpha * t) - self._params.teta);
     
     dx = 3.0 * x - x ** 3.0 + 2.0 - y + self._stimulus[index] * potential_influence + self._coupling_term[index] + self._noise[index];
     dy = self._params.eps * (self._params.gamma * (1.0 + math.tanh(x / self._params.betta)) - y);
     
     neighbors = self.get_neighbors(index);
     potential = 0.0;
     
     for index_neighbor in neighbors:
         potential += self._params.T * heaviside(self._excitatory[index_neighbor] - self._params.teta_x);
     
     dp = self._params.lamda * (1.0 - p) * heaviside(potential - self._params.teta_p) - self._params.mu * p;
     
     return [dx, dy, dp];
Esempio n. 3
0
 def _calculate_states(self, solution, t, step, int_step):
     """!
     @brief Calculates new state of each oscillator in the network.
     
     @param[in] solution (solve_type): Type solver of the differential equation.
     @param[in] t (double): Current time of simulation.
     @param[in] step (double): Step of solution at the end of which states of oscillators should be calculated.
     @param[in] int_step (double): Step differentiation that is used for solving differential equation.
     
     """
     
     next_excitatory = [0.0] * self._num_osc;
     next_inhibitory = [0.0] * self._num_osc;
     
     next_potential = [];
     if (self._params.ENABLE_POTENTIONAL is True):
         next_potential = [0.0] * self._num_osc;
     
     # Update states of oscillators
     for index in range (0, self._num_osc, 1):
         if (self._params.ENABLE_POTENTIONAL is True):
             result = odeint(self._legion_state, [self._excitatory[index], self._inhibitory[index], self._potential[index]], numpy.arange(t - step, t, int_step), (index , ));
             [ next_excitatory[index], next_inhibitory[index], next_potential[index] ] = result[len(result) - 1][0:3];
             
         else:
             result = odeint(self._legion_state_simplify, [self._excitatory[index], self._inhibitory[index] ], numpy.arange(t - step, t, int_step), (index , ));
             [ next_excitatory[index], next_inhibitory[index] ] = result[len(result) - 1][0:2];               
         
         # Update coupling term
         neighbors = self.get_neighbors(index);
         
         coupling = 0
         for index_neighbor in neighbors:
             coupling += self._dynamic_coupling[index][index_neighbor] * heaviside(self._excitatory[index_neighbor] - self._params.teta_x);
         
         self._buffer_coupling_term[index] = coupling - self._params.Wz * heaviside(self._global_inhibitor - self._params.teta_xz);
     
     # Update state of global inhibitory
     result = odeint(self._global_inhibitor_state, self._global_inhibitor, numpy.arange(t - step, t, int_step), (None, ));
     self._global_inhibitor = result[len(result) - 1][0];
     
     self._noise = [random.random() * self._params.ro for i in range(self._num_osc)];
     self._coupling_term = self._buffer_coupling_term[:];
     self._inhibitory = next_inhibitory[:];
     self._excitatory = next_excitatory[:];
     
     if (self._params.ENABLE_POTENTIONAL is True):
         self._potential = next_potential[:];
Esempio n. 4
0
 def _calculate_states(self, solution, t, step, int_step):
     """!
     @brief Calculates new state of each oscillator in the network.
     
     @param[in] solution (solve_type): Type solver of the differential equation.
     @param[in] t (double): Current time of simulation.
     @param[in] step (double): Step of solution at the end of which states of oscillators should be calculated.
     @param[in] int_step (double): Step differentiation that is used for solving differential equation.
     
     """
     
     next_excitatory = [0.0] * self._num_osc;
     next_inhibitory = [0.0] * self._num_osc;
     
     next_potential = [];
     if (self._params.ENABLE_POTENTIONAL is True):
         next_potential = [0.0] * self._num_osc;
     
     # Update states of oscillators
     for index in range (0, self._num_osc, 1):
         if (self._params.ENABLE_POTENTIONAL is True):
             result = odeint(self._legion_state, [self._excitatory[index], self._inhibitory[index], self._potential[index]], numpy.arange(t - step, t, int_step), (index , ));
             [ next_excitatory[index], next_inhibitory[index], next_potential[index] ] = result[len(result) - 1][0:3];
             
         else:
             result = odeint(self._legion_state_simplify, [self._excitatory[index], self._inhibitory[index] ], numpy.arange(t - step, t, int_step), (index , ));
             [ next_excitatory[index], next_inhibitory[index] ] = result[len(result) - 1][0:2];
         
         # Update coupling term
         neighbors = self.get_neighbors(index);
         
         coupling = 0
         for index_neighbor in neighbors:
             coupling += self._dynamic_coupling[index][index_neighbor] * heaviside(self._excitatory[index_neighbor] - self._params.teta_x);
         
         self._buffer_coupling_term[index] = coupling - self._params.Wz * heaviside(self._global_inhibitor - self._params.teta_xz);
     
     # Update state of global inhibitory
     result = odeint(self._global_inhibitor_state, self._global_inhibitor, numpy.arange(t - step, t, int_step), (None, ));
     self._global_inhibitor = result[len(result) - 1][0];
     
     self._noise = [random.random() * self._params.ro for i in range(self._num_osc)];
     self._coupling_term = self._buffer_coupling_term[:];
     self._inhibitory = next_inhibitory[:];
     self._excitatory = next_excitatory[:];
     
     if (self._params.ENABLE_POTENTIONAL is True):
         self._potential = next_potential[:];
Esempio n. 5
0
    def _legion_state_simplify(self, inputs, t, argv):
        """!
        @brief Returns new values of excitatory and inhibitory parts of oscillator of oscillator.
        @details Simplify model doesn't consider oscillator potential.
        
        @param[in] inputs (list): Initial values (current) of oscillator [excitatory, inhibitory].
        @param[in] t (double): Current time of simulation.
        @param[in] argv (uint): Extra arguments that are not used for integration - index of oscillator.
        
        @return (list) New values of excitatoty and inhibitory part of oscillator (not assign).
        
        """

        index = argv

        x = inputs[0]
        # excitatory
        y = inputs[1]
        # inhibitory

        dx = 3.0 * x - x**3.0 + 2.0 - y + self._stimulus[
            index] + self._coupling_term[index] + self._noise[index]
        dy = self._params.eps * (self._params.gamma *
                                 (1.0 + math.tanh(x / self._params.betta)) - y)

        neighbors = self.get_neighbors(index)
        potential = 0.0

        for index_neighbor in neighbors:
            potential += self._params.T * heaviside(
                self._excitatory[index_neighbor] - self._params.teta_x)

        return [dx, dy]
Esempio n. 6
0
 def _legion_state_simplify(self, inputs, t, argv):
     """!
     @brief Returns new values of excitatory and inhibitory parts of oscillator of oscillator.
     @details Simplify model doesn't consider oscillator potential.
     
     @param[in] inputs (list): Initial values (current) of oscillator [excitatory, inhibitory].
     @param[in] t (double): Current time of simulation.
     @param[in] argv (uint): Extra arguments that are not used for integration - index of oscillator.
     
     @return (list) New values of excitatoty and inhibitory part of oscillator (not assign).
     
     """
     
     index = argv;
     
     x = inputs[0];  # excitatory
     y = inputs[1];  # inhibitory
     
     dx = 3.0 * x - x ** 3.0 + 2.0 - y + self._stimulus[index] + self._coupling_term[index] + self._noise[index];
     dy = self._params.eps * (self._params.gamma * (1.0 + math.tanh(x / self._params.betta)) - y);
     
     neighbors = self.get_neighbors(index);
     potential = 0.0;
     
     for index_neighbor in neighbors:
         potential += self._params.T * heaviside(self._excitatory[index_neighbor] - self._params.teta_x);
     
     return [dx, dy];    
Esempio n. 7
0
 def __allocate_neuron_patterns(self, start_iteration, stop_iteration):
     """!
     @brief Allocates observation transposed matrix of neurons that is limited by specified periods of simulation.
     @details Matrix where state of each neuron is denoted by zero/one in line with Heaviside function on each iteration.
     
     @return (list) Transposed observation matrix that is limited by specified periods of simulation.
     
     """
     
     pattern_matrix = []
     for index_neuron in range(len(self.output[0])):
         pattern_neuron = []
         for iteration in range(start_iteration, stop_iteration):
             pattern_neuron.append(heaviside(self.output[iteration][index_neuron]))
         
         pattern_matrix.append(pattern_neuron)
     
     return pattern_matrix
Esempio n. 8
0
 def allocate_observation_matrix(self):
     """!
     @brief Allocates observation matrix in line with output dynamic of the network.
     @details Matrix where state of each neuron is denoted by zero/one in line with Heaviside function on each iteration.
     
     @return (list) Observation matrix of the network dynamic.
     
     """
     number_neurons = len(self.output[0])
     observation_matrix = []
     
     for iteration in range(len(self.output)):
         obervation_column = []
         for index_neuron in range(number_neurons):
             obervation_column.append(heaviside(self.output[iteration][index_neuron]))
         
         observation_matrix.append(obervation_column)
     
     return observation_matrix