Esempio n. 1
0
 def to_copasi(self) -> model.Model:
     """
     Build a copasi file from the sbml generated from tellurium
     
     Returns:
         A :py:class:`tasks.Model`
     """
     return model.loada(self.to_antimony(), self.copasi_file)
Esempio n. 2
0
def load_model(k1, k_minus1, k2):
    # create a base directory to work from
    working_directory = os.path.abspath('')
    filename = f'Model_k1={k1}_kminus1={k_minus1}_k2={k2}.cps'

    # create a string to a copasi file on system
    copasi_filename = os.path.join(working_directory, filename)
    antimony_string = f'''
        model negative_feedback()
            // define compartments
            compartment cell = 1.0
            
            //define species
            S in cell
            P in cell
            C in cell
            I in cell
            
            //define initial conditions
            S      = 1
            C      = 1
            I      = 0
            P      = 0
    
            // reaction parameters
            k1             = {k1}
            k_minus1       = {k_minus1}
            k2             = {k2}
    
            //define reactions
            R1:         S + C => I; cell * k1 * S * C
            R_minus1:   I => S + C; cell * k_minus1 * I
            R3:         I => P + C; cell * k2 * I
    
        end
        '''

    return model.loada(antimony_string, copasi_filename)  # load the model
Esempio n. 3
0
    def setUp(self):
        super(ProfileLikelihoodTests, self).setUp()
        ant_str = """
        model new_model
            R1: A -> B ; _k1*A;
            R2: B -> A; k2*B;
            R3: C -> D; _k3*C*B;
            R4: D -> C; k4*D;
            
            A = 100;
            B = 0;
            _k1=0.1;
            k2 = 0.01
            _k3 = 0.01
            k4 = 1
        end
        """
        self.copasi_file = os.path.join(os.path.dirname(__file__),
                                        'test_model.cps')
        self.model = model.loada(ant_str, self.copasi_file)
        self.fname = os.path.join(os.path.dirname(__file__), 'timecourse.txt')
        self.data = self.model.simulate(0, 10, 1, report_name=self.fname)

        with tasks.ParameterEstimation.Context(self.model,
                                               self.fname,
                                               context='s',
                                               parameters='g') as context:
            context.set('method', 'hooke_jeeves')
            context.set('run_mode', True)
            context.set('prefix', '_')
            context.set('randomize_start_values', True)
            config = context.get_config()
        self.pe = tasks.ParameterEstimation(config)
        data = viz.Parse(self.pe).data['test_model']
        self.rss = data.loc[0, 'RSS']
        self.pe_mod = self.pe.models['test_model'].model
        self.pe_mod.insert_parameters(df=data, index=0, inplace=True)
Esempio n. 4
0
            #context.set('number_of_generations', 300)
            context.set('run_mode', True)  ##defaults to False
            context.set('pe_number', 3)  ## number of repeat items in scan task
            #context.set('copy_number', 2)  ## number of times to copy model
            #context.set('problem', 'Problem1')
            #context.set('fit', 3)
            #context.set('prefix', 'k')
        config = context.get_config()

        pe = tasks.ParameterEstimation(config)

        #myPctMod.open()
        data = viz.Parse(pe)
        print(data)

    myExMod = model.loada(model_string_ex, copasi_ex_filename)

    def my_add_cols(inFName, outFName, sState, i1State, i2State):
        myData = pd.read_csv(
            os.path.join(os.path.dirname(working_directory), 'data', inFName))
        myData.insert(len(myData.columns), 'S_indep', sState)
        myData.insert(len(myData.columns), 'I1_indep', i1State)
        myData.insert(len(myData.columns), 'I2_indep', i2State)
        myData.rename(columns={
            "pN": "Np",
            "pG": "Gp",
            "pD": "Dp",
            "pK": "Kp"
        },
                      inplace=True)
        myData.to_csv(os.path.join(working_directory, outFName))
Esempio n. 5
0
    ADeg_k1 = 0.1;
    
    // Other declarations:
    var ThisIsAssignment;
    const nuc, cyt, A2B, B2C;
    
    // Unit definitions:
    unit volume = 1e-3 litre;
    unit substance = 1e-3 mole;
    
    // Display Names:
    A2B_0 is "A2B";
    B2C_0 is "B2C";
end"""
copasi_file = os.path.join(os.getcwd(), 'copasi_file.cps')
mod = model.loada(ant, copasi_file=copasi_file)

TC1 = tasks.TimeCourse(mod,
                       end=1000,
                       step_size=100,
                       intervals=10,
                       report_name='report1.txt')

TC2 = tasks.TimeCourse(mod,
                       end=1000,
                       step_size=100,
                       intervals=10,
                       report_name='report2.txt')

TC3 = tasks.TimeCourse(mod,
                       end=1000,
Esempio n. 6
0
    os.environ["PATH"] += os.pathsep + "/Applications/copasi"

working_dir = os.path.abspath('')

copasi_filename = os.path.join(working_dir, "testNoRun.cps")

test_string = """
model test_model()
    var A
    
    R1: ->A; 1
    R2: A->; 1
end
"""

theModel = model.loada(test_string, copasi_filename)

theTimeCourse = tasks.TimeCourse(theModel, run=False)

shellString = """#!/bin/bash
# Example SLURM job script for serial (non-parallel) jobs
#
#
# Tell SLURM if you want to be emailed when your job starts, ends, etc.
# Currently mail can only be sent to addresses @ncl.ac.uk
#
#SBATCH --mail-type=ALL
#SBATCH [email protected]
#

def antStringToDiagramSBML(antString, filePath, tempPath):
    myAntList = oldAntStr.splitlines()
    myAntList = [antLineReactionReducer(line) for line in myAntList]
    newAntStr = "\n".join(myAntList)
    newModel = model.loada(newAntStr, tempPath)
    newModel.to_sbml(sbml_file=filePath)
Esempio n. 8
0
Created on Wed Jan 22 16:04:37 2020

@author: peter
"""

from pycotools3 import model
import re, os

copasiPath = "/Applications/copasi"
if not re.search(copasiPath, os.environ["PATH"]):
    os.environ["PATH"] += os.pathsep + copasiPath
    
working_directory = os.path.dirname(os.path.abspath(__file__))

f = open(os.path.join(working_directory,'antFile.txt'), "r" )
oldAntStr = f.read()
f.close()

copasi_filename = os.path.join(working_directory,'temp.cps')

model = model.loada(oldAntStr, copasi_filename)

kineticNames = model.get_variable_names(which='gl',
                                        include_assignments=False)
metaboliteNames = model.get_variable_names(which='m',
                                           include_assignments=False)

model.parameters[kineticNames].to_csv(
        path_or_buf=os.path.join(working_directory,"oldKVals.csv"))

Esempio n. 9
0
    A = 100;
    B = 1;
    C = 1;

    // reaction parameters
    k1 = 0.1;
    k2 = 0.1;
    k3 = 0.1;
    k4 = 0.1;
end
"""

copasi_file = os.path.join(working_directory, 'example_model.cps')

## build model
mod = model.loada(antimony_string, copasi_file)

assert isinstance(mod, model.Model)

## simulate some data, returns a pandas.DataFrame
data = mod.simulate(0, 20, 1)

## write data to file
experiment_filename = os.path.join(working_directory, 'experiment_data.txt')
data.to_csv(experiment_filename)

with tasks.ParameterEstimation.Context(
    mod, experiment_filename,
    context='pl', parameters='gm'
) as context:
    context.set('method', 'hooke_jeeves')