Esempio n. 1
0
    def test_write_dset_under_root(self):
        file_path = 'test.h5'
        self.__delete_existing_file(file_path)
        with h5py.File(file_path) as h5_f:

            writer = HDFwriter(h5_f)
            data = np.random.rand(5, 7)
            attrs = {'att_1': 'string_val',
                     'att_2': 1.2345,
                     'att_3': [1, 2, 3, 4],
                     'att_4': ['str_1', 'str_2', 'str_3'],
                     'labels': {'even_rows': (slice(0, None, 2), slice(None)),
                                'odd_rows': (slice(1, None, 2), slice(None))}
                     }
            micro_dset = VirtualDataset('test', data)
            micro_dset.attrs = attrs.copy()
            [h5_dset] = writer.write(micro_dset)
            self.assertIsInstance(h5_dset, h5py.Dataset)

            reg_ref = attrs.pop('labels')

            self.assertEqual(len(h5_dset.attrs), len(attrs) + 1 + len(reg_ref))

            for key, expected_val in attrs.items():
                self.assertTrue(np.all(get_attr(h5_dset, key) == expected_val))

            self.assertTrue(np.all([x in list(reg_ref.keys()) for x in get_attr(h5_dset, 'labels')]))

            expected_data = [data[:None:2], data[1:None:2]]
            written_data = [h5_dset[h5_dset.attrs['even_rows']], h5_dset[h5_dset.attrs['odd_rows']]]

            for exp, act in zip(expected_data, written_data):
                self.assertTrue(np.allclose(exp, act))

        os.remove(file_path)
    def test_print(self):
        group_name = 'indexed_group_'
        group = VirtualGroup(group_name)
        dset_name_1 = 'dset_1'
        data_1 = np.arange(3)
        dset_1 = VirtualDataset(dset_name_1, data_1)
        dset_name_2 = 'dset_2'
        data_2 = np.random.rand(2, 3)
        dset_2 = VirtualDataset(dset_name_2, data_2)
        inner_grp_name = 'other_indexed_group_'
        inner_group = VirtualGroup(inner_grp_name)
        inner_group.add_children(dset_2)
        group.add_children([dset_1, inner_group])

        # http://pragmaticpython.com/2017/03/23/unittesting-print-statements/
        stdout_org = sys.stdout
        my_stdout = MyOutput()
        try:
            sys.stdout = my_stdout
            group.show_tree()
        finally:
            sys.stdout = stdout_org

        self.assertEqual(str(my_stdout), "/indexed_group_/dset_1\n/indexed_group_/other_indexed_group_\n/indexed_group_"
                                         "/other_indexed_group_/dset_2\n")
Esempio n. 3
0
    def test_write_dset_under_root(self):
        file_path = 'test.h5'
        self.__delete_existing_file(file_path)
        with h5py.File(file_path) as h5_f:

            writer = HDFwriter(h5_f)
            data = np.random.rand(5, 7)
            attrs = {'att_1': 'string_val',
                     'att_2': 1.2345,
                     'att_3': [1, 2, 3, 4],
                     'att_4': ['str_1', 'str_2', 'str_3'],
                     'labels': {'even_rows': (slice(0, None, 2), slice(None)),
                                'odd_rows': (slice(1, None, 2), slice(None))}
                     }
            micro_dset = VirtualDataset('test', data)
            micro_dset.attrs = attrs.copy()
            [h5_dset] = writer.write(micro_dset)
            self.assertIsInstance(h5_dset, h5py.Dataset)

            reg_ref = attrs.pop('labels')

            self.assertEqual(len(h5_dset.attrs), len(attrs) + 1 + len(reg_ref))

            for key, expected_val in attrs.items():
                self.assertTrue(np.all(get_attr(h5_dset, key) == expected_val))

            self.assertTrue(np.all([x in list(reg_ref.keys()) for x in get_attr(h5_dset, 'labels')]))

            expected_data = [data[:None:2], data[1:None:2]]
            written_data = [h5_dset[h5_dset.attrs['even_rows']], h5_dset[h5_dset.attrs['odd_rows']]]

            for exp, act in zip(expected_data, written_data):
                self.assertTrue(np.allclose(exp, act))

        os.remove(file_path)
 def test_add_children_legal_01(self):
     group_name = 'indexed_group_'
     group = VirtualGroup(group_name)
     dset_name_1 = 'dset_1'
     data_1 = np.arange(3)
     dset_1 = VirtualDataset(dset_name_1, data_1)
     dset_name_2 = 'dset_2'
     data_2 = np.random.rand(2, 3)
     dset_2 = VirtualDataset(dset_name_2, data_2)
     group.add_children([dset_1, dset_2])
     self.assertEqual(len(group.children), 2)
Esempio n. 5
0
    def test_simple_dset_write_success_more_options_03(self):
        file_path = 'test.h5'
        self.__delete_existing_file(file_path)
        with h5py.File(file_path) as h5_f:

            dset_name = 'test'
            data = np.random.rand(16, 1024)
            dtype = np.float16
            compression = 'gzip'
            chunking = (1, 1024)
            microdset = VirtualDataset(dset_name,
                                       data,
                                       dtype=dtype,
                                       compression=compression,
                                       chunking=chunking)

            writer = HDFwriter(h5_f)
            h5_d = writer._create_simple_dset(h5_f, microdset)
            self.assertIsInstance(h5_d, h5py.Dataset)
            self.assertEqual(h5_d.parent, h5_f)
            self.assertEqual(h5_d.name, '/' + dset_name)
            self.assertEqual(h5_d.shape, data.shape)
            self.assertEqual(h5_d.dtype, dtype)
            self.assertEqual(h5_d.compression, compression)
            self.assertEqual(h5_d.chunks, chunking)
            self.assertTrue(np.all(h5_d[()] - data < 1E-3))

        os.remove(file_path)
 def test_incompatible_maxshape_chunking_01(self):
     name = 'test'
     chunking = (3, 128)
     maxshape = (1,129)
     data = np.random.rand(5, 128)
     with self.assertRaises(ValueError):
         _ = VirtualDataset(name, data, chunking=chunking, maxshape=maxshape)
Esempio n. 7
0
    def test_write_reg_ref_slice_dim_larger_than_data(self):
        file_path = 'test.h5'
        self.__delete_existing_file(file_path)
        with h5py.File(file_path) as h5_f:
            writer = HDFwriter(h5_f)
            data = np.random.rand(5, 7)
            h5_dset = writer._create_simple_dset(h5_f, VirtualDataset('test', data))
            self.assertIsInstance(h5_dset, h5py.Dataset)

            attrs = {'labels': {'even_rows': (slice(0, 15, 2), slice(None)),
                                'odd_rows': (slice(1, 15, 2), slice(None))}}

            writer._write_dset_attributes(h5_dset, attrs.copy())
            h5_f.flush()

            # two atts point to region references. one for labels
            self.assertEqual(len(h5_dset.attrs), 1 + len(attrs['labels']))

            # check if the labels attribute was written:

            self.assertTrue(np.all([x in list(attrs['labels'].keys()) for x in get_attr(h5_dset, 'labels')]))

            expected_data = [data[:None:2], data[1:None:2]]
            written_data = [h5_dset[h5_dset.attrs['even_rows']], h5_dset[h5_dset.attrs['odd_rows']]]

            for exp, act in zip(expected_data, written_data):
                self.assertTrue(np.allclose(exp, act))

        os.remove(file_path)
Esempio n. 8
0
    def test_generate_and_write_reg_ref_legal(self):
        file_path = 'test.h5'
        self.__delete_existing_file(file_path)
        with h5py.File(file_path) as h5_f:

            writer = HDFwriter(h5_f)
            data = np.random.rand(2, 7)
            h5_dset = writer._create_simple_dset(h5_f, VirtualDataset('test', data))
            self.assertIsInstance(h5_dset, h5py.Dataset)

            attrs = {'labels': ['row_1', 'row_2']}
            if sys.version_info.major == 3:
                with self.assertWarns(UserWarning):
                    writer._write_dset_attributes(h5_dset, attrs.copy())
            else:
                writer._write_dset_attributes(h5_dset, attrs.copy())
            h5_f.flush()

            # two atts point to region references. one for labels
            self.assertEqual(len(h5_dset.attrs), 1 + len(attrs['labels']))

            # check if the labels attribute was written:

            self.assertTrue(np.all([x in list(attrs['labels']) for x in get_attr(h5_dset, 'labels')]))

            expected_data = [data[0], data[1]]
            written_data = [h5_dset[h5_dset.attrs['row_1']], h5_dset[h5_dset.attrs['row_2']]]

            for exp, act in zip(expected_data, written_data):
                self.assertTrue(np.allclose(np.squeeze(exp), np.squeeze(act)))

        os.remove(file_path)
Esempio n. 9
0
    def test_empty_dset_write_success_w_options_02(self):
        file_path = 'test.h5'
        self.__delete_existing_file(file_path)
        with h5py.File(file_path) as h5_f:

            dset_name = 'test'
            maxshape = (16, 1024)
            chunking = (1, 1024)
            compression = 'gzip'
            dtype = np.float16
            microdset = VirtualDataset(dset_name, None, maxshape=maxshape,
                                       dtype=dtype, compression=compression, chunking=chunking)

            writer = HDFwriter(h5_f)
            h5_d = writer._create_empty_dset(h5_f, microdset)
            self.assertIsInstance(h5_d, h5py.Dataset)
            self.assertEqual(h5_d.parent, h5_f)
            self.assertEqual(h5_d.name, '/' + dset_name)
            self.assertEqual(h5_d.dtype, dtype)
            self.assertEqual(h5_d.compression, compression)
            self.assertEqual(h5_d.chunks, chunking)
            self.assertEqual(h5_d.shape, maxshape)
            self.assertEqual(h5_d.maxshape, maxshape)

        os.remove(file_path)
Esempio n. 10
0
 def test_simple_correct_01(self):
     data = np.arange(5)
     name = 'test'
     dset = VirtualDataset(name, data)
     self.assertTrue(np.all(np.equal(dset.data, data)))
     self.assertEqual(dset.name, name)
     self.assertEqual(dset.resizable, False)
     self.assertEqual(dset.maxshape, None)
Esempio n. 11
0
 def test_large_empty_correct_01(self):
     data = None
     name = 'test'
     maxshape = (1024, 16384)
     dset = VirtualDataset(name, data, maxshape=maxshape)
     self.assertEqual(dset.data, data)
     self.assertEqual(dset.name, name)
     self.assertEqual(dset.resizable, False)
     self.assertEqual(dset.maxshape, maxshape)
Esempio n. 12
0
 def test_resizable_correct_01(self):
     dtype = np.uint16
     data = np.zeros(shape=(1, 7), dtype=dtype)
     name = 'test'
     resizable = True
     dset = VirtualDataset(name, data, resizable=resizable)
     self.assertTrue(np.all(np.equal(dset.data, data)))
     self.assertEqual(dset.name, name)
     self.assertEqual(dset.resizable, resizable)
     self.assertEqual(dset.maxshape, None)
Esempio n. 13
0
 def test_simple_dset_str_dtype_valid(self):
     data = np.arange(5, dtype=np.complex64)
     name = 'test'
     dtype = 'uint8'
     dset = VirtualDataset(name, data, dtype=dtype)
     self.assertTrue(np.all(np.equal(dset.data, data)))
     self.assertEqual(dset.name, name)
     self.assertEqual(dset.resizable, False)
     self.assertEqual(dset.maxshape, None)
     self.assertEqual(dset.dtype, np.dtype(dtype))
Esempio n. 14
0
 def test_correct_compression_simple_dset(self):
     data = np.arange(5)
     name = 'test'
     compression = 'gzip'
     dset = VirtualDataset(name, data, compression=compression)
     self.assertTrue(np.all(np.equal(dset.data, data)))
     self.assertEqual(dset.name, name)
     self.assertEqual(dset.resizable, False)
     self.assertEqual(dset.maxshape, None)
     self.assertEqual(dset.compression, compression)
Esempio n. 15
0
    def test_write_dset_under_invalid_group(self):
        file_path = 'test.h5'
        self.__delete_existing_file(file_path)
        with h5py.File(file_path) as h5_f:

            writer = HDFwriter(h5_f)

            with self.assertRaises(KeyError):
                _ = writer.write(VirtualDataset('test', np.random.rand(5, 7), parent='/does_not_exist'))

        os.remove(file_path)
Esempio n. 16
0
 def test_add_single_child_legal_01(self):
     dset_name_1 = 'dset_1'
     data_1 = np.arange(3)
     dset_1 = VirtualDataset(dset_name_1, data_1)
     group_name = 'indexed_group_'
     group = VirtualGroup(group_name)
     group.add_children(dset_1)
     group.show_tree()
     self.assertEqual(len(group.children), 1)
     in_dset = group.children[0]
     self.assertIsInstance(in_dset, VirtualDataset)
     self.assertEqual(in_dset.name, dset_name_1)
     self.assertTrue(np.all(np.equal(in_dset.data, data_1)))
Esempio n. 17
0
    def test_generate_and_write_reg_ref_illegal(self):
        file_path = 'test.h5'
        self.__delete_existing_file(file_path)
        with h5py.File(file_path) as h5_f:

            writer = HDFwriter(h5_f)
            data = np.random.rand(2, 7)
            h5_dset = writer._create_simple_dset(h5_f, VirtualDataset('test', data))
            self.assertIsInstance(h5_dset, h5py.Dataset)

            # with self.assertWarns(UserWarning):
            with self.assertRaises(TypeError):
                writer._write_dset_attributes(h5_dset, {'labels': [1, np.arange(3)]})

        os.remove(file_path)
Esempio n. 18
0
    def test_write_illegal_reg_ref_not_slice_objs(self):
        file_path = 'test.h5'
        self.__delete_existing_file(file_path)
        with h5py.File(file_path) as h5_f:
            writer = HDFwriter(h5_f)
            data = np.random.rand(5, 7)
            h5_dset = writer._create_simple_dset(h5_f, VirtualDataset('test', data))
            self.assertIsInstance(h5_dset, h5py.Dataset)

            attrs = {'labels': {'even_rows': (slice(0, None, 2), 15),
                                'odd_rows': (slice(1, None, 2), 'hello')}}

            with self.assertRaises(TypeError):
                writer._write_dset_attributes(h5_dset, attrs.copy())

        os.remove(file_path)
Esempio n. 19
0
    def test_generate_and_write_reg_ref_illegal(self):
        file_path = 'test.h5'
        self.__delete_existing_file(file_path)
        with h5py.File(file_path) as h5_f:

            writer = HDFwriter(h5_f)
            data = np.random.rand(3, 7)
            h5_dset = writer._create_simple_dset(h5_f, VirtualDataset('test', data))
            self.assertIsInstance(h5_dset, h5py.Dataset)

            # with self.assertWarns(UserWarning):
            writer._write_dset_attributes(h5_dset, {'labels': ['row_1', 'row_2']})

            self.assertEqual(len(h5_dset.attrs), 0)

            h5_f.flush()

        os.remove(file_path)
Esempio n. 20
0
    def test_empty_dset_write_success_01(self):
        file_path = 'test.h5'
        self.__delete_existing_file(file_path)
        with h5py.File(file_path) as h5_f:

            dset_name = 'test'
            maxshape = (16, 1024)
            microdset = VirtualDataset(dset_name, None, maxshape=maxshape)

            writer = HDFwriter(h5_f)
            h5_d = writer._create_empty_dset(h5_f, microdset)
            self.assertIsInstance(h5_d, h5py.Dataset)
            self.assertEqual(h5_d.parent, h5_f)
            self.assertEqual(h5_d.name, '/' + dset_name)
            self.assertEqual(h5_d.shape, maxshape)
            self.assertEqual(h5_d.maxshape, maxshape)
            # dtype is assigned automatically by h5py. Not to be tested here

        os.remove(file_path)
Esempio n. 21
0
    def test_simple_dset_write_success_01(self):
        file_path = 'test.h5'
        self.__delete_existing_file(file_path)
        with h5py.File(file_path) as h5_f:

            dtype = np.uint16
            dset_name = 'test'
            data = np.random.randint(0, high=15, size=5, dtype=dtype)
            microdset = VirtualDataset(dset_name, data)

            writer = HDFwriter(h5_f)
            h5_d = writer._create_simple_dset(h5_f, microdset)
            self.assertIsInstance(h5_d, h5py.Dataset)
            self.assertEqual(h5_d.parent, h5_f)
            self.assertEqual(h5_d.name, '/' + dset_name)
            self.assertEqual(h5_d.shape, data.shape)
            self.assertTrue(np.allclose(h5_d[()], data))
            self.assertEqual(h5_d.dtype, dtype)

        os.remove(file_path)
Esempio n. 22
0
    def test_expandable_dset_write_success_01(self):
        file_path = 'test.h5'
        self.__delete_existing_file(file_path)
        with h5py.File(file_path) as h5_f:

            dset_name = 'test'
            maxshape = (None, 1024)
            data = np.random.rand(1, 1024)
            microdset = VirtualDataset(dset_name, data, maxshape=maxshape)

            writer = HDFwriter(h5_f)
            h5_d = writer._create_resizeable_dset(h5_f, microdset)
            self.assertIsInstance(h5_d, h5py.Dataset)
            self.assertEqual(h5_d.parent, h5_f)
            self.assertEqual(h5_d.name, '/' + dset_name)
            self.assertEqual(h5_d.shape, data.shape)
            self.assertEqual(h5_d.maxshape, maxshape)
            self.assertTrue(np.allclose(h5_d[()], data))

            # Now test to make sure that the dataset can be expanded:
            # TODO: add this to the example!

            expansion_axis = 0
            h5_d.resize(h5_d.shape[expansion_axis] + 1, axis=expansion_axis)

            self.assertEqual(h5_d.shape, (data.shape[0]+1, data.shape[1]))
            self.assertEqual(h5_d.maxshape, maxshape)

            # Finally try checking to see if this new data is also present in the file
            new_data = np.random.rand(1024)
            h5_d[1] = new_data

            data = np.vstack((np.squeeze(data), new_data))
            self.assertTrue(np.allclose(h5_d[()], data))

        os.remove(file_path)
Esempio n. 23
0
 def test_invalid_chunking_argument_02(self):
     name = 'test'
     chunking = ('a', range(5))
     data = np.random.rand(2, 128)
     with self.assertRaises(ValueError):
         _ = VirtualDataset(name, data, chunking=chunking)
Esempio n. 24
0
    def test_write_simple_tree(self):
        file_path = 'test.h5'
        self.__delete_existing_file(file_path)
        with h5py.File(file_path) as h5_f:

            inner_dset_data = np.random.rand(5, 7)
            inner_dset_attrs = {'att_1': 'string_val',
                                'att_2': 1.2345,
                                'att_3': [1, 2, 3, 4],
                                'att_4': ['str_1', 'str_2', 'str_3'],
                                'labels': {'even_rows': (slice(0, None, 2), slice(None)),
                                           'odd_rows': (slice(1, None, 2), slice(None))}
                                }
            inner_dset = VirtualDataset('inner_dset', inner_dset_data)
            inner_dset.attrs = inner_dset_attrs.copy()

            attrs_inner_grp = {'att_1': 'string_val',
                               'att_2': 1.2345,
                               'att_3': [1, 2, 3, 4],
                               'att_4': ['str_1', 'str_2', 'str_3']}
            inner_group = VirtualGroup('indexed_inner_group_')
            inner_group.attrs = attrs_inner_grp
            inner_group.add_children(inner_dset)

            outer_dset_data = np.random.rand(5, 7)
            outer_dset_attrs = {'att_1': 'string_val',
                                'att_2': 1.2345,
                                'att_3': [1, 2, 3, 4],
                                'att_4': ['str_1', 'str_2', 'str_3'],
                                'labels': {'even_rows': (slice(0, None, 2), slice(None)),
                                           'odd_rows': (slice(1, None, 2), slice(None))}
                                }
            outer_dset = VirtualDataset('test', outer_dset_data, parent='/test_group')
            outer_dset.attrs = outer_dset_attrs.copy()

            attrs_outer_grp = {'att_1': 'string_val',
                               'att_2': 1.2345,
                               'att_3': [1, 2, 3, 4],
                               'att_4': ['str_1', 'str_2', 'str_3']}
            outer_group = VirtualGroup('unindexed_outer_group')
            outer_group.attrs = attrs_outer_grp
            outer_group.add_children([inner_group, outer_dset])

            writer = HDFwriter(h5_f)
            h5_refs_list = writer.write(outer_group)

            # I don't know of a more elegant way to do this:
            [h5_outer_dset] = get_h5_obj_refs([outer_dset.name], h5_refs_list)
            [h5_inner_dset] = get_h5_obj_refs([inner_dset.name], h5_refs_list)
            [h5_outer_group] = get_h5_obj_refs([outer_group.name], h5_refs_list)
            [h5_inner_group] = get_h5_obj_refs(['indexed_inner_group_000'], h5_refs_list)

            self.assertIsInstance(h5_outer_dset, h5py.Dataset)
            self.assertIsInstance(h5_inner_dset, h5py.Dataset)
            self.assertIsInstance(h5_outer_group, h5py.Group)
            self.assertIsInstance(h5_inner_group, h5py.Group)

            # check assertions for the inner dataset first
            self.assertEqual(h5_inner_dset.parent, h5_inner_group)

            reg_ref = inner_dset_attrs.pop('labels')

            self.assertEqual(len(h5_inner_dset.attrs), len(inner_dset_attrs) + 1 + len(reg_ref))

            for key, expected_val in inner_dset_attrs.items():
                self.assertTrue(np.all(get_attr(h5_inner_dset, key) == expected_val))

            self.assertTrue(np.all([x in list(reg_ref.keys()) for x in get_attr(h5_inner_dset, 'labels')]))

            expected_data = [inner_dset_data[:None:2], inner_dset_data[1:None:2]]
            written_data = [h5_inner_dset[h5_inner_dset.attrs['even_rows']], h5_inner_dset[h5_inner_dset.attrs['odd_rows']]]

            for exp, act in zip(expected_data, written_data):
                self.assertTrue(np.allclose(exp, act))

            # check assertions for the inner data group next:
            self.assertEqual(h5_inner_group.parent, h5_outer_group)
            for key, expected_val in attrs_inner_grp.items():
                self.assertTrue(np.all(get_attr(h5_inner_group, key) == expected_val))

            # check the outer dataset next:
            self.assertEqual(h5_outer_dset.parent, h5_outer_group)

            reg_ref = outer_dset_attrs.pop('labels')

            self.assertEqual(len(h5_outer_dset.attrs), len(outer_dset_attrs) + 1 + len(reg_ref))

            for key, expected_val in outer_dset_attrs.items():
                self.assertTrue(np.all(get_attr(h5_outer_dset, key) == expected_val))

            self.assertTrue(np.all([x in list(reg_ref.keys()) for x in get_attr(h5_outer_dset, 'labels')]))

            expected_data = [outer_dset_data[:None:2], outer_dset_data[1:None:2]]
            written_data = [h5_outer_dset[h5_outer_dset.attrs['even_rows']],
                            h5_outer_dset[h5_outer_dset.attrs['odd_rows']]]

            for exp, act in zip(expected_data, written_data):
                self.assertTrue(np.allclose(exp, act))

            # Finally check the outer group:
            self.assertEqual(h5_outer_group.parent, h5_f)
            for key, expected_val in attrs_outer_grp.items():
                self.assertTrue(np.all(get_attr(h5_outer_group, key) == expected_val))

        os.remove(file_path)
Esempio n. 25
0
 def test_chunking_w_none(self):
     name = 'test'
     chunking = (None, 128)
     data = np.random.rand(2, 128)
     with self.assertRaises(ValueError):
         _ = VirtualDataset(name, data, chunking=chunking)
Esempio n. 26
0
 def test_incompatible_maxshape_data_shapes(self):
     name = 'test'
     maxshape = 128
     data = np.random.rand(2, 128)
     with self.assertRaises(ValueError):
        _ = VirtualDataset(name, data, maxshape=maxshape)
Esempio n. 27
0
 def test_incorrect_compression_simple_dset(self):
     data = np.arange(5)
     name = 'test'
     compression = 'blah'
     with self.assertRaises(ValueError):
         _ = VirtualDataset(name, data, compression=compression)
Esempio n. 28
0
 def test_empty_incorrect_01(self):
     data = None
     name = 'test'
     maxshape = (None, 16384)
     with self.assertRaises(ValueError):
         _ = VirtualDataset(name, data, maxshape=maxshape)
Esempio n. 29
0
 def test_insufficient_inputs(self):
     name = 'test'
     with self.assertRaises(ValueError):
         _ = VirtualDataset(name, data=None)
Esempio n. 30
0
    def test_write_simple_tree(self):
        file_path = 'test.h5'
        self.__delete_existing_file(file_path)
        with h5py.File(file_path) as h5_f:

            inner_dset_data = np.random.rand(5, 7)
            inner_dset_attrs = {'att_1': 'string_val',
                                'att_2': 1.2345,
                                'att_3': [1, 2, 3, 4],
                                'att_4': ['str_1', 'str_2', 'str_3'],
                                'labels': {'even_rows': (slice(0, None, 2), slice(None)),
                                           'odd_rows': (slice(1, None, 2), slice(None))}
                                }
            inner_dset = VirtualDataset('inner_dset', inner_dset_data)
            inner_dset.attrs = inner_dset_attrs.copy()

            attrs_inner_grp = {'att_1': 'string_val',
                               'att_2': 1.2345,
                               'att_3': [1, 2, 3, 4],
                               'att_4': ['str_1', 'str_2', 'str_3']}
            inner_group = VirtualGroup('indexed_inner_group_')
            inner_group.attrs = attrs_inner_grp
            inner_group.add_children(inner_dset)

            outer_dset_data = np.random.rand(5, 7)
            outer_dset_attrs = {'att_1': 'string_val',
                                'att_2': 1.2345,
                                'att_3': [1, 2, 3, 4],
                                'att_4': ['str_1', 'str_2', 'str_3'],
                                'labels': {'even_rows': (slice(0, None, 2), slice(None)),
                                           'odd_rows': (slice(1, None, 2), slice(None))}
                                }
            outer_dset = VirtualDataset('test', outer_dset_data, parent='/test_group')
            outer_dset.attrs = outer_dset_attrs.copy()

            attrs_outer_grp = {'att_1': 'string_val',
                               'att_2': 1.2345,
                               'att_3': [1, 2, 3, 4],
                               'att_4': ['str_1', 'str_2', 'str_3']}
            outer_group = VirtualGroup('unindexed_outer_group')
            outer_group.attrs = attrs_outer_grp
            outer_group.add_children([inner_group, outer_dset])

            writer = HDFwriter(h5_f)
            h5_refs_list = writer.write(outer_group)

            # I don't know of a more elegant way to do this:
            [h5_outer_dset] = get_h5_obj_refs([outer_dset.name], h5_refs_list)
            [h5_inner_dset] = get_h5_obj_refs([inner_dset.name], h5_refs_list)
            [h5_outer_group] = get_h5_obj_refs([outer_group.name], h5_refs_list)
            [h5_inner_group] = get_h5_obj_refs(['indexed_inner_group_000'], h5_refs_list)

            self.assertIsInstance(h5_outer_dset, h5py.Dataset)
            self.assertIsInstance(h5_inner_dset, h5py.Dataset)
            self.assertIsInstance(h5_outer_group, h5py.Group)
            self.assertIsInstance(h5_inner_group, h5py.Group)

            # check assertions for the inner dataset first
            self.assertEqual(h5_inner_dset.parent, h5_inner_group)

            reg_ref = inner_dset_attrs.pop('labels')

            self.assertEqual(len(h5_inner_dset.attrs), len(inner_dset_attrs) + 1 + len(reg_ref))

            for key, expected_val in inner_dset_attrs.items():
                self.assertTrue(np.all(get_attr(h5_inner_dset, key) == expected_val))

            self.assertTrue(np.all([x in list(reg_ref.keys()) for x in get_attr(h5_inner_dset, 'labels')]))

            expected_data = [inner_dset_data[:None:2], inner_dset_data[1:None:2]]
            written_data = [h5_inner_dset[h5_inner_dset.attrs['even_rows']], h5_inner_dset[h5_inner_dset.attrs['odd_rows']]]

            for exp, act in zip(expected_data, written_data):
                self.assertTrue(np.allclose(exp, act))

            # check assertions for the inner data group next:
            self.assertEqual(h5_inner_group.parent, h5_outer_group)
            for key, expected_val in attrs_inner_grp.items():
                self.assertTrue(np.all(get_attr(h5_inner_group, key) == expected_val))

            # check the outer dataset next:
            self.assertEqual(h5_outer_dset.parent, h5_outer_group)

            reg_ref = outer_dset_attrs.pop('labels')

            self.assertEqual(len(h5_outer_dset.attrs), len(outer_dset_attrs) + 1 + len(reg_ref))

            for key, expected_val in outer_dset_attrs.items():
                self.assertTrue(np.all(get_attr(h5_outer_dset, key) == expected_val))

            self.assertTrue(np.all([x in list(reg_ref.keys()) for x in get_attr(h5_outer_dset, 'labels')]))

            expected_data = [outer_dset_data[:None:2], outer_dset_data[1:None:2]]
            written_data = [h5_outer_dset[h5_outer_dset.attrs['even_rows']],
                            h5_outer_dset[h5_outer_dset.attrs['odd_rows']]]

            for exp, act in zip(expected_data, written_data):
                self.assertTrue(np.allclose(exp, act))

            # Finally check the outer group:
            self.assertEqual(h5_outer_group.parent, h5_f)
            for key, expected_val in attrs_outer_grp.items():
                self.assertTrue(np.all(get_attr(h5_outer_group, key) == expected_val))

        os.remove(file_path)
Esempio n. 31
0
 def test_incompatible_chunking_data(self):
     name = 'test'
     chunking = (4, 128)
     data = np.random.rand(2, 128)
     with self.assertRaises(ValueError):
         _ = VirtualDataset(name, data, chunking=chunking)
Esempio n. 32
0
 def test_incompatible_chunking_data_03(self):
     name = 'test'
     chunking = (4, 128)
     maxshape = (None, 128)
     with self.assertRaises(ValueError):
         _ = VirtualDataset(name, None, maxshape=maxshape, chunking=chunking)