Esempio n. 1
0
 def test_combine_responses(self):
     ds = mock.MagicMock()
     var_url = 'http://test.crunch.io/api/datasets/123/variables/0001/'
     subvar1_url = 'http://test.crunch.io/api/datasets/123/variables/0001/subvariables/00001/'
     subvar2_url = 'http://test.crunch.io/api/datasets/123/variables/0001/subvariables/00002/'
     ds.entity.self = 'http://test.crunch.io/api/datasets/123/'
     entity_mock = mock.MagicMock()
     entity_mock.entity.self = var_url
     # mock subvariables
     subvar_mock = mock.MagicMock()
     subvar_mock.entity.self = subvar1_url
     subvar2_mock = mock.MagicMock()
     subvar2_mock.entity.self = subvar2_url
     # add dictionaries return to by function
     entity_mock.entity.subvariables.by.return_value = {
         'sub1': subvar_mock,
         'sub2': subvar2_mock
     }
     ds.variables.by.return_value = {
         'test': entity_mock
     }
     # make the actual response call
     combine_responses(ds, 'test', RESPONSE_MAP, 'name', 'alias')
     call = ds.variables.create.call_args_list[0][0][0]
     expected_payload = {
         'element': 'shoji:entity',
         'body': {
             'alias': 'alias',
             'description': '',
             'name': 'name',
             'expr': {
                 'function': 'combine_responses',
                 'args': [
                     {
                         'variable': 'http://test.crunch.io/api/datasets/123/variables/0001/'
                     },
                     {
                         'value': [
                             {
                                 'name': 'newsubvar',
                                 'combined_ids': [
                                     'http://test.crunch.io/api/datasets/123/variables/0001/subvariables/00001/',
                                     'http://test.crunch.io/api/datasets/123/variables/0001/subvariables/00002/'
                                 ]
                             }
                         ]
                     }
                 ]
             }
         }
     }
     assert call == expected_payload
def main():
    assert not invalid_credentials()

    # Login.
    site = pycrunch.connect(CRUNCH_USER, CRUNCH_PASSWORD, CRUNCH_URL)
    assert isinstance(site, pycrunch.shoji.Catalog)

    # Create the test dataset.
    dataset = site.datasets.create(DATASET_DOC).refresh()
    assert isinstance(dataset, pycrunch.shoji.Entity)

    try:
        # Load initial data.
        pycrunch.importing.importer.append_rows(dataset, ROWS)

        # Check the initial number of rows.
        df = pandaslib.dataframe(dataset)
        assert len(df) == len(ROWS) - 1  # excluding the header

        # 1. Exclusion Filter Integration Tests

        # 1.1 Set a simple exclusion filter.

        pycrunch.datasets.exclusion(dataset, 'identity > 5')
        df = pandaslib.dataframe(dataset)
        assert len(df) == 5

        # 1.2 More complex exclusion filters involving a categorical variable.

        expr = 'speak_spanish in [32766]'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 10

        expr = 'speak_spanish in (32766, 32767)'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 9

        expr = 'not (speak_spanish in (1, 2) and operating_system == "Linux")'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 2

        # 1.3 Exclusion filters with `has_any`.

        expr = 'hobbies.has_any([32766])'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 8

        expr = 'not hobbies.has_any([32766])'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 4

        expr = 'hobbies.has_any([32766, 32767])'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 7

        expr = 'music.has_any([32766])'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 12

        expr = 'music.has_any([1])'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 1

        expr = 'music.has_any([1, 2])'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 0

        # 1.4 Exclusion filters with `has_all`.

        expr = 'hobbies.has_all([32767])'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 11

        expr = 'not hobbies.has_all([32767])'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 1

        expr = 'music.has_all([1])'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 11

        expr = 'music.has_all([1]) or music.has_all([2])'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 10

        expr = 'not ( music.has_all([1]) or music.has_all([2]) )'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 2

        # 1.5 Exclusion filters with `duplicates`.

        expr = 'ip_address.duplicates()'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 10

        # 1.6 Exclusion filters with `valid` and `missing`.

        expr = 'valid(speak_spanish)'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 3

        expr = 'not valid(speak_spanish)'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 9

        expr = 'missing(speak_spanish)'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 9

        expr = 'missing(hobbies)'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 11

        expr = 'not missing(hobbies)'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 1

        expr = 'valid(hobbies)'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 5

        expr = 'not valid(hobbies)'
        pycrunch.datasets.exclusion(dataset, expr)
        df = pandaslib.dataframe(dataset)
        assert len(df) == 7

        # 1.7 Clear the exclusion filter.
        pycrunch.datasets.exclusion(dataset)
        df = pandaslib.dataframe(dataset)
        assert len(df) == len(ROWS) - 1  # excluding the header

        # 2. Integration Tests for "Transformations".

        categories = [
            {'id': 1, 'name': 'Nerds', 'numeric_value': 1, 'missing': False},
            {'id': 2, 'name': 'Normal Users', 'numeric_value': 2, 'missing': False},
            {'id': 3, 'name': 'Hipsters', 'numeric_value': 3, 'missing': False},
            {'id': 32767, 'name': 'Unknown', 'numeric_value': None, 'missing': True}
        ]

        rules = [
            'operating_system in ("Linux", "Solaris", "Minix", "FreeBSD", "NetBSD")',
            'operating_system == "Windows"',
            'operating_system == "MacOS"',
            'missing(operating_system)'
        ]

        new_var = create_categorical(
            ds=dataset,
            categories=categories,
            rules=rules,
            name='Operating System Users',
            alias='operating_system_users',
            description='Type of Operating System Users'
        )
        assert isinstance(new_var, pycrunch.shoji.Entity)
        new_var.refresh()
        assert new_var.body.type == 'categorical'

        # Check the data on the new variable.
        df = pandaslib.dataframe(dataset)
        assert 'operating_system_users' in df

        # Check the nerds.
        assert len(df[df['operating_system_users'] == 'Nerds']) == 8
        assert set(
            r['operating_system']
            for _, r in df[df['operating_system_users'] == 'Nerds'].iterrows()
        ) == {'Linux', 'Solaris', 'Minix', 'FreeBSD', 'NetBSD'}

        # Check the hipsters.
        assert len(df[df['operating_system_users'] == 'Hipsters']) == 1
        assert set(
            r['operating_system']
            for _, r in df[df['operating_system_users'] == 'Hipsters'].iterrows()
        ) == {'MacOS'}

        # Check normal users.
        assert len(df[df['operating_system_users'] == 'Normal Users']) == 3
        assert set(
            r['operating_system']
            for _, r in df[df['operating_system_users'] == 'Normal Users'].iterrows()
        ) == {'Windows'}

        # 3. Integration Tests for "Recodes".

        # 3.1 combine_categories.

        # On a 'categorical' variable.
        cat_map = {
            1: {
                'name': 'Bilingual',
                'missing': False,
                'combined_ids': [2, 3]
            },
            2: {
                'name': 'Not Bilingual',
                'missing': False,
                'combined_ids': [1, 4]
            },
            99: {
                'name': 'Unknown',
                'missing': True,
                'combined_ids': [32766, 32767]
            }
        }
        new_var = combine_categories(
            dataset, 'speak_spanish', cat_map, 'Bilingual Person', 'bilingual'
        )
        assert isinstance(new_var, pycrunch.shoji.Entity)
        new_var.refresh()
        assert new_var.body.type == 'categorical'

        df = pandaslib.dataframe(dataset)
        assert 'bilingual' in df

        # Check the data in the recoded variable.
        assert len(df[df['bilingual'] == 'Bilingual']) == 5
        assert set(
            int(r['identity'])
            for _, r in df[df['bilingual'] == 'Bilingual'].iterrows()
        ) == {3, 4, 10, 11, 12}

        assert len(df[df['bilingual'] == 'Not Bilingual']) == 4
        assert set(
            int(r['identity'])
            for _, r in df[df['bilingual'] == 'Not Bilingual'].iterrows()
        ) == {1, 2, 5, 6}

        assert len(df[df['bilingual'].isnull()]) == 3
        assert set(
            int(r['identity'])
            for _, r in df[df['bilingual'].isnull()].iterrows()
        ) == {7, 8, 9}

        # On a 'categorical_array' variable.
        cat_map = {
            1: {
                'name': 'Interested',
                'missing': False,
                'combined_ids': [1, 2]
            },
            2: {
                'name': 'Not interested',
                'missing': False,
                'combined_ids': [3, 4]
            },
            99: {
                'name': 'Unknown',
                'missing': True,
                'combined_ids': [32766, 32767]
            }
        }
        new_var = combine_categories(
            dataset, 'hobbies', cat_map, 'Hobbies (recoded)', 'hobbies_recoded'
        )
        assert isinstance(new_var, pycrunch.shoji.Entity)
        new_var.refresh()
        assert new_var.body.type == 'categorical_array'

        df = pandaslib.dataframe(dataset)
        assert 'hobbies_recoded' in df

        # Check the data in the recoded variable.
        for _, row in df[['hobbies', 'hobbies_recoded']].iterrows():
            hobbies = row['hobbies']
            hobbies_rec = row['hobbies_recoded']
            assert len(hobbies) == len(hobbies_rec)

            for i, value in enumerate(hobbies):
                if value in ({'?': 32766}, {'?': 32767}):
                    assert hobbies_rec[i] == {'?': 99}
                elif value in (1, 2):
                    assert hobbies_rec[i] == 1
                elif value in (3, 4):
                    assert hobbies_rec[i] == 2

        # 3.2 combine_responses.

        response_map = {
            'music_recoded_1': ['music_1', 'music_2'],
            'music_recoded_2': ['music_97'],
            'music_recoded_3': ['music_98', 'music_99']
        }
        new_var = combine_responses(
            dataset, 'music', response_map, 'Music (alt)', 'music_recoded'
        )
        assert isinstance(new_var, pycrunch.shoji.Entity)
        new_var.refresh()
        assert new_var.body.type == 'multiple_response'

        df = pandaslib.dataframe(dataset)
        assert 'music_recoded' in df

        # TODO: Test the data in the recoded variable. Unsure of its meaning.

    finally:
        dataset.delete()