Esempio n. 1
0
 def test_log_likelihood_v(self):
     print('RBM Estimator -> Performing log_likelihood_v test ...')
     sys.stdout.flush()
     numx.random.seed(42)
     ll = numx.mean(
         Estimator.log_likelihood_v(self.bbrbm, self.bbrbmTruelogZ,
                                    self.bbrbmData, 1.0))
     assert numx.all(numx.abs(ll - self.bbrbmTrueLL) < self.epsilon)
     # Test List
     testList = []
     for i in range(self.bbrbmData.shape[0]):
         testList.append(self.bbrbmData[i].reshape(1, 4))
     ll = numx.mean(
         Estimator.log_likelihood_v(self.bbrbm, self.bbrbmTruelogZ,
                                    testList, 1.0))
     assert numx.all(numx.abs(ll - self.bbrbmTrueLL) < self.epsilon)
     print('successfully passed!')
     sys.stdout.flush()
Esempio n. 2
0
 def test_log_likelihood_h(self):
     print('RBM Estimator -> Performing log_likelihood_h test ...')
     sys.stdout.flush()
     numx.random.seed(42)
     hdata = numx.float64(
         self.bbrbm.probability_h_given_v(self.bbrbmData) < 0.5)
     ll = numx.mean(
         Estimator.log_likelihood_h(self.bbrbm, self.bbrbmTruelogZ, hdata,
                                    1.0))
     assert numx.all(numx.abs(ll + 9.55929166739) < self.epsilon)
     # Test List
     testList = []
     for i in range(hdata.shape[0]):
         testList.append(hdata[i].reshape(1, 4))
     ll = numx.mean(
         Estimator.log_likelihood_v(self.bbrbm, self.bbrbmTruelogZ,
                                    testList, 1.0))
     assert numx.all(numx.abs(ll + 9.55929166739) < self.epsilon)
     print('successfully passed!')
     sys.stdout.flush()
Esempio n. 3
0
                         update_visible_offsets=0.0,
                         update_hidden_offsets=0.0,
                         offset_typ='00',
                         restrict_gradient=restrict,
                         restriction_norm='Cols',
                         use_hidden_states=False,
                         use_centered_gradient=False)

# Calculate reconstruction error
RE_train = numx.mean(estimator.reconstruction_error(rbm, train_data))
RE_test = numx.mean(estimator.reconstruction_error(rbm, test_data))
print '%5d \t%0.5f \t%0.5f' % (max_epochs, RE_train, RE_test)

# Approximate partition function by AIS (tends to overestimate)
logZ = estimator.annealed_importance_sampling(rbm)[0]
LL_train = numx.mean(estimator.log_likelihood_v(rbm, logZ, train_data))
LL_test = numx.mean(estimator.log_likelihood_v(rbm, logZ, test_data))
print 'AIS: \t%0.5f \t%0.5f' % (LL_train, LL_test)

# Approximate partition function by reverse AIS (tends to underestimate)
logZ = estimator.reverse_annealed_importance_sampling(rbm)[0]
LL_train = numx.mean(estimator.log_likelihood_v(rbm, logZ, train_data))
LL_test = numx.mean(estimator.log_likelihood_v(rbm, logZ, test_data))
print 'reverse AIS \t%0.5f \t%0.5f' % (LL_train, LL_test)

# Reorder RBM features by average activity decreasingly
rbmReordered = vis.reorder_filter_by_hidden_activation(rbm, train_data)

# Display RBM parameters
vis.imshow_standard_rbm_parameters(rbmReordered, v1, v2, h1, h2)
Esempio n. 4
0
    'Epoch\tRecon. Error\tLog likelihood train\tLog likelihood test\tExpected End-Time'
)
for epoch in range(epochs):

    # Loop over all batches
    for b in range(0, train_data.shape[0], batch_size):
        batch = train_data[b:b + batch_size, :]
        trainer_pcd.train(data=batch,
                          epsilon=0.01,
                          update_visible_offsets=update_offsets,
                          update_hidden_offsets=update_offsets)

    # Calculate Log-Likelihood, reconstruction error and expected end time every 5th epoch
    if (epoch == 0 or (epoch + 1) % 5 == 0):
        logZ = estimator.partition_function_factorize_h(rbm)
        ll_train = numx.mean(estimator.log_likelihood_v(rbm, logZ, train_data))
        ll_test = numx.mean(estimator.log_likelihood_v(rbm, logZ, test_data))
        re = numx.mean(estimator.reconstruction_error(rbm, train_data))
        print('{}\t\t{:.4f}\t\t\t{:.4f}\t\t\t\t{:.4f}\t\t\t{}'.format(
            epoch + 1, re, ll_train, ll_test,
            measurer.get_expected_end_time(epoch + 1, epochs)))
    else:
        print(epoch + 1)

measurer.end()

# Print end/training time
print("End-time: \t{}".format(measurer.get_end_time()))
print("Training time:\t{}".format(measurer.get_interval()))

# Calculate true partition function
Esempio n. 5
0
                         reg_l1norm=0.0,
                         reg_l2norm=0.0,
                         reg_sparseness=0.0,
                         desired_sparseness=0.0,
                         update_visible_offsets=0.0,
                         update_hidden_offsets=0.0,
                         restrict_gradient=False,
                         restriction_norm='Cols',
                         use_hidden_states=False,
                         use_centered_gradient=False)

    # Calculate Log likelihood and reconstruction error
    RE_train = numx.mean(estimator.reconstruction_error(rbm, train_data))
    RE_test = numx.mean(estimator.reconstruction_error(rbm, test_data))
    logZ = estimator.partition_function_factorize_h(rbm, batchsize_exponent=h1)
    LL_train = numx.mean(estimator.log_likelihood_v(rbm, logZ, train_data))
    LL_test = numx.mean(estimator.log_likelihood_v(rbm, logZ, test_data))
    print '%5d \t%0.5f \t%0.5f \t%0.5f \t%0.5f' % (epoch, RE_train, RE_test,
                                                   LL_train, LL_test)

# Calculate partition function and its AIS approximation
logZ = estimator.partition_function_factorize_h(rbm, batchsize_exponent=h1)
logZ_AIS = estimator.annealed_importance_sampling(rbm,
                                                  num_chains=100,
                                                  k=1,
                                                  betas=1000,
                                                  status=False)[0]
logZ_rAIS = estimator.reverse_annealed_importance_sampling(rbm,
                                                           num_chains=100,
                                                           k=1,
                                                           betas=1000,
Esempio n. 6
0
# Measuring time
measurer = MEASURE.Stopwatch()

# Train model
print "Training"
print "Epoch\tRecon. Error\tLog likelihood \tExpected End-Time"
for epoch in range(1, epochs + 1):
    train_data = numx.random.permutation(train_data)
    for b in range(0, train_data.shape[0], batch_size):
        batch = train_data[b : b + batch_size, :]
        trainer.train(data=batch, epsilon=0.1, regL2Norm=0.001)

    # Calculate Log-Likelihood, reconstruction error and expected end time every 10th epoch
    if epoch % 10 == 0:
        Z = ESTIMATOR.partition_function_factorize_h(rbm)
        LL = numx.mean(ESTIMATOR.log_likelihood_v(rbm, Z, train_data))
        RE = numx.mean(ESTIMATOR.reconstruction_error(rbm, train_data))
        print "%d\t\t%8.6f\t\t%8.4f\t\t" % (epoch, RE, LL),
        print measurer.get_expected_end_time(epoch, epochs),
        print

measurer.end()

# Print end time
print
print "End-time: \t", measurer.get_end_time()
print "Training time:\t", measurer.get_interval()

# Calculate and approximate partition function
Z = ESTIMATOR.partition_function_factorize_h(rbm, batchsize_exponent=h1, status=False)