def test_topo_sort(self, session): canvas = Planner(session) ops = canvas.chain( "Assemble Plasmid", "Transform Cells", "Plate Transformed Cells", "Check Plate", category="Cloning", ) ops[-1].x = 500 for _ in range(3): canvas.chain(ops[-1], ("E Coli Lysate", "Cloning"), "E Coli Colony PCR") lysate = canvas.get_op_by_name("E Coli Lysate") pcr = canvas.get_op_by_name("E Coli Colony PCR") canvas.layout.ops_to_subgraph(pcr).translate(100, 100) assert not canvas.layout.ops_to_subgraph(lysate).midpoint()[0] == ops[-1].x assert ( not canvas.layout.ops_to_subgraph(lysate).midpoint()[0] == canvas.layout.ops_to_subgraph(pcr).midpoint()[0] ) canvas.layout.topo_sort() assert canvas.layout.ops_to_subgraph(lysate).midpoint()[0] == ops[-1].x assert ( canvas.layout.ops_to_subgraph(lysate).midpoint()[0] == canvas.layout.ops_to_subgraph(pcr).midpoint()[0] )
def test_align_x_with_predecessors(self, session): canvas = Planner(session) ops = canvas.chain( "Assemble Plasmid", "Transform Cells", "Plate Transformed Cells", "Check Plate", category="Cloning", ) new_ops = canvas.get_op_by_name("E Coli Lysate") print(len(new_ops)) for _ in range(3): print("created") canvas.chain(ops[-1], "E Coli Lysate", category="Cloning") new_ops = canvas.get_op_by_name("E Coli Lysate") print(len(new_ops)) new_ops[0].x = 0 new_ops[1].x = 100 new_ops[2].x = 150 ops_layout = canvas.layout.ops_to_subgraph(ops) new_op_layout = canvas.layout.ops_to_subgraph(new_ops) midpoint = new_op_layout.midpoint() assert midpoint[0] == 75, "should be midpoint between 0 and 150" assert midpoint[0] != ops_layout.midpoint()[0] new_op_layout.align_x_midpoints_to(ops_layout) for op in new_op_layout.operations: print(op.rid) print(op.x) print() assert new_op_layout.midpoint()[0] == ops_layout.midpoint()[0]
def test_optimize3(self, session): """Here we setup two operations chains of 5. 6 of these operations will be mergable (10 to 7). We also add additional operations to one of the Miniprep operations. We should end up with 9 operations after the optimization. Additionally, the merged Miniprep should have a single output with 3 wires. """ with session.with_cache() as sess: canvas = Planner(sess) q = self.sql({ "object_type_id": sess.ObjectType.find_by_name("E coli Plate of Plasmid").id, "location": self.Not("deleted"), }) item = sess.Item.one(query=q) assert item chain = [ "Check Plate", "Make Overnight Suspension", "Make Miniprep", "Yeast Transformation", "Yeast Overnight Suspension", ] ops = canvas.chain(*chain) canvas.set_field_value_and_propogate(ops[0].inputs[0], sample=item.sample) canvas.set_to_available_item(ops[0].inputs[0]) ops[-1].tagged = "YES" ops = canvas.chain(*chain) canvas.set_field_value_and_propogate(ops[0].inputs[0], sample=item.sample) canvas.set_to_available_item(ops[0].inputs[0]) canvas.chain(ops[2], "Yeast Transformation") canvas.chain(ops[2], "Make PCR Fragment") assert len(canvas.plan.operations) == 12 assert len(canvas.get_outgoing_wires(ops[2].outputs[0])) == 3 canvas.optimize() assert len(canvas.plan.operations) == 9 assert len(canvas.get_outgoing_wires(ops[2].outputs[0])) == 4 for yt in canvas.get_op_by_name("Yeast Transformation"): print(yt.inputs[0].name) assert len(canvas.get_incoming_wires(yt.inputs[0]))
def test_optimize_case5_array_inputs_merge_missing_samples(self, session): with session.with_cache() as sess: canvas = Planner(sess) canvas.logger.set_level("DEBUG") q = self.sql({ "object_type_id": sess.ObjectType.find_by_name("Fragment Stock").id, "location": self.Not("deleted"), }) primers = sess.Sample.last( 4, query={ "sample_type_id": sess.SampleType.find_by_name("Primer").id }) fragments = sess.Sample.last( 4, query={ "sample_type_id": sess.SampleType.find_by_name("Fragment").id }) plasmids = sess.Sample.last( 3, query={ "sample_type_id": sess.SampleType.find_by_name("Plasmid").id }) subchain = [ "Make PCR Fragment", "Run Gel", "Extract Gel Slice", "Purify Gel Slice", ] ops1 = canvas.chain(*(subchain + ["Assemble Plasmid"])) ops2 = canvas.chain(*(subchain + ops1[-1:])) ops3 = canvas.chain(*(subchain + ["Assemble Plasmid"])) ops4 = canvas.chain(*(subchain + ops3[-1:])) ops5 = canvas.chain(*(subchain + ["Assemble Plasmid"])) ops6 = canvas.chain(*(subchain + ops5[-1:])) ops7 = canvas.chain(*(subchain + ops5[-1:])) ops8 = canvas.chain(*(subchain + ops5[-1:])) ops9 = canvas.chain(*(subchain + ops5[-1:])) for op in canvas.get_op_by_name("Run Gel"): pour_gel = canvas.chain("Pour Gel", op)[0] # pour_gels = [op for op in canvas.operations if # op.operation_type.name == 'Pour Gel'] # print([op.outputs[0].sample for op in pour_gels]) # chain1 using primer1 canvas.set_field_value_and_propogate(ops1[0].outputs[0], sample=fragments[0]) # chain2 using primer2 canvas.set_field_value_and_propogate(ops2[0].outputs[0], sample=fragments[1]) # chain3 using primer2 canvas.set_field_value_and_propogate(ops3[0].outputs[0], sample=fragments[1]) # chain4 using primer1 canvas.set_field_value_and_propogate(ops4[0].outputs[0], sample=fragments[0]) canvas.set_field_value_and_propogate(ops6[0].outputs[0], sample=fragments[1]) canvas.set_field_value_and_propogate(ops7[0].outputs[0], sample=fragments[1]) def pcr(op, p1, p2, t): canvas.set_field_value(op.input("Forward Primer"), sample=p1) canvas.set_field_value(op.input("Reverse Primer"), sample=p2) canvas.set_field_value(op.input("Template"), sample=t) pcr(ops1[0], primers[0], primers[1], plasmids[0]) pcr(ops2[0], primers[2], primers[3], plasmids[1]) pcr(ops4[0], primers[0], primers[1], plasmids[0]) pcr(ops3[0], primers[2], primers[3], plasmids[1]) canvas.set_field_value(ops1[-1].outputs[0], sample=plasmids[2]) canvas.set_field_value(ops3[-1].outputs[0], sample=plasmids[2]) op_types = sorted( [op.operation_type.name for op in canvas.operations]) print(op_types) canvas.optimize(merge_missing_samples=True) op_types = sorted( [op.operation_type.name for op in canvas.operations]) print(op_types) assert len(canvas.get_op_by_name("Assemble Plasmid")) == 2 assert len(canvas.get_op_by_name("Pour Gel")) == 4 for op in canvas.get_op_by_name("Assemble Plasmid"): assert len({fv.child_sample_id for fv in op.inputs}) == 2 assert len(op.inputs) in [5, 2]