Esempio n. 1
0
import pydiffvg
import torch
# import skimage
# import numpy as np

# Use GPU if available
pydiffvg.set_use_gpu(torch.cuda.is_available())

canvas_width = 256
canvas_height = 256
circle = pydiffvg.Circle(radius=torch.tensor(40.0),
                         center=torch.tensor([128.0, 128.0]))
shapes = [circle]
circle_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor([0]),
                                   fill_color=torch.tensor(
                                       [0.3, 0.6, 0.3, 1.0]))
shape_groups = [circle_group]
scene_args = pydiffvg.RenderFunction.serialize_scene(
    canvas_width,
    canvas_height,
    shapes,
    shape_groups,
    output_type=pydiffvg.OutputType.sdf)

render = pydiffvg.RenderFunction.apply
img = render(
    256,  # width
    256,  # height
    2,  # num_samples_x
    2,  # num_samples_y
    0,  # seed
Esempio n. 2
0
    def save(self,
             all_points,
             save_dir,
             name,
             verbose=False,
             white_background=True):
        # note that this if for a single shape and bs dimension should have multiple curves
        # print('1:', process.memory_info().rss*1e-6)
        render_size = self.imsize
        bs = all_points.shape[0]
        if verbose:
            render_size = render_size * 2
        all_points = all_points * render_size
        num_ctrl_pts = torch.zeros(self.curves, dtype=torch.int32) + 2

        shapes = []
        shape_groups = []
        for k in range(bs):
            # Get point parameters from network
            color = make_tensor(color[k])
            points = all_points[k].cpu().contiguous()  #[self.sort_idx[k]]

            if verbose:
                np.random.seed(0)
                colors = np.random.rand(self.curves, 4)
                high = np.array((0.565, 0.392, 0.173, 1))
                low = np.array((0.094, 0.310, 0.635, 1))
                diff = (high - low) / (self.curves)
                colors[:, 3] = 1
                for i in range(self.curves):
                    scale = diff * i
                    color = low + scale
                    color[3] = 1
                    color = torch.tensor(color)
                    num_ctrl_pts = torch.zeros(1, dtype=torch.int32) + 2
                    if i * 3 + 4 > self.curves * 3:
                        curve_points = torch.stack([
                            points[i * 3], points[i * 3 + 1],
                            points[i * 3 + 2], points[0]
                        ])
                    else:
                        curve_points = points[i * 3:i * 3 + 4]
                    path = pydiffvg.Path(num_control_points=num_ctrl_pts,
                                         points=curve_points,
                                         is_closed=False,
                                         stroke_width=torch.tensor(4))
                    path_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor(
                        [i]),
                                                     fill_color=None,
                                                     stroke_color=color)
                    shapes.append(path)
                    shape_groups.append(path_group)
                for i in range(self.curves * 3):
                    scale = diff * (i // 3)
                    color = low + scale
                    color[3] = 1
                    color = torch.tensor(color)
                    if i % 3 == 0:
                        # color = torch.tensor(colors[i//3]) #green
                        shape = pydiffvg.Rect(p_min=points[i] - 8,
                                              p_max=points[i] + 8)
                        group = pydiffvg.ShapeGroup(shape_ids=torch.tensor(
                            [self.curves + i]),
                                                    fill_color=color)

                    else:
                        # color = torch.tensor(colors[i//3]) #purple
                        shape = pydiffvg.Circle(radius=torch.tensor(8.0),
                                                center=points[i])
                        group = pydiffvg.ShapeGroup(shape_ids=torch.tensor(
                            [self.curves + i]),
                                                    fill_color=color)
                    shapes.append(shape)
                    shape_groups.append(group)

            else:

                path = pydiffvg.Path(num_control_points=num_ctrl_pts,
                                     points=points,
                                     is_closed=True)

                shapes.append(path)
                path_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor(
                    [len(shapes) - 1]),
                                                 fill_color=color,
                                                 stroke_color=color)
                shape_groups.append(path_group)
        pydiffvg.save_svg(f"{save_dir}{name}/{name}.svg", self.imsize,
                          self.imsize, shapes, shape_groups)
Esempio n. 3
0
def parse_shape(node, transform, fill_color, shapes, shape_groups, defs):
    tag = remove_namespaces(node.tag)
    new_transform, new_fill_color, stroke_color, stroke_width, use_even_odd_rule = \
        parse_common_attrib(node, transform, fill_color, defs)
    if tag == 'path':
        d = node.attrib['d']
        name = ''
        if 'id' in node.attrib:
            name = node.attrib['id']
        force_closing = new_fill_color is not None
        paths = pydiffvg.from_svg_path(d, new_transform, force_closing)
        for idx, path in enumerate(paths):
            assert (path.points.shape[1] == 2)
            path.stroke_width = stroke_width
            path.source_id = name
            path.id = "{}-{}".format(name, idx) if len(paths) > 1 else name
        prev_shapes_size = len(shapes)
        shapes = shapes + paths
        shape_ids = torch.tensor(list(range(prev_shapes_size, len(shapes))))
        shape_groups.append(pydiffvg.ShapeGroup(\
            shape_ids = shape_ids,
            fill_color = new_fill_color,
            stroke_color = stroke_color,
            use_even_odd_rule = use_even_odd_rule,
            id = name))
    elif tag == 'polygon':
        name = ''
        if 'id' in node.attrib:
            name = node.attrib['id']
        force_closing = new_fill_color is not None
        pts = node.attrib['points'].strip()
        pts = pts.split(' ')
        # import ipdb; ipdb.set_trace()
        pts = [[float(y) for y in re.split(',| ', x)] for x in pts if x]
        pts = torch.tensor(pts, dtype=torch.float32).view(-1, 2)
        polygon = pydiffvg.Polygon(pts, force_closing)
        polygon.stroke_width = stroke_width
        shape_ids = torch.tensor([len(shapes)])
        shapes.append(polygon)
        shape_groups.append(pydiffvg.ShapeGroup(\
            shape_ids = shape_ids,
            fill_color = new_fill_color,
            stroke_color = stroke_color,
            use_even_odd_rule = use_even_odd_rule,
            shape_to_canvas = new_transform,
            id = name))
    elif tag == 'line':
        x1 = float(node.attrib['x1'])
        y1 = float(node.attrib['y1'])
        x2 = float(node.attrib['x2'])
        y2 = float(node.attrib['y2'])
        p1 = torch.tensor([x1, y1])
        p2 = torch.tensor([x2, y2])
        points = torch.stack((p1, p2))
        line = pydiffvg.Polygon(points, False)
        line.stroke_width = stroke_width
        shape_ids = torch.tensor([len(shapes)])
        shapes.append(line)
        shape_groups.append(pydiffvg.ShapeGroup(\
            shape_ids = shape_ids,
            fill_color = new_fill_color,
            stroke_color = stroke_color,
            use_even_odd_rule = use_even_odd_rule,
            shape_to_canvas = new_transform))
    elif tag == 'circle':
        radius = float(node.attrib['r'])
        cx = float(node.attrib['cx'])
        cy = float(node.attrib['cy'])
        name = ''
        if 'id' in node.attrib:
            name = node.attrib['id']
        center = torch.tensor([cx, cy])
        circle = pydiffvg.Circle(radius=torch.tensor(radius), center=center)
        circle.stroke_width = stroke_width
        shape_ids = torch.tensor([len(shapes)])
        shapes.append(circle)
        shape_groups.append(pydiffvg.ShapeGroup(\
            shape_ids = shape_ids,
            fill_color = new_fill_color,
            stroke_color = stroke_color,
            use_even_odd_rule = use_even_odd_rule,
            shape_to_canvas = new_transform))
    elif tag == 'ellipse':
        rx = float(node.attrib['rx'])
        ry = float(node.attrib['ry'])
        cx = float(node.attrib['cx'])
        cy = float(node.attrib['cy'])
        name = ''
        if 'id' in node.attrib:
            name = node.attrib['id']
        center = torch.tensor([cx, cy])
        circle = pydiffvg.Circle(radius=torch.tensor(radius), center=center)
        circle.stroke_width = stroke_width
        shape_ids = torch.tensor([len(shapes)])
        shapes.append(circle)
        shape_groups.append(pydiffvg.ShapeGroup(\
            shape_ids = shape_ids,
            fill_color = new_fill_color,
            stroke_color = stroke_color,
            use_even_odd_rule = use_even_odd_rule,
            shape_to_canvas = new_transform))
    elif tag == 'rect':
        x = 0.0
        y = 0.0
        if x in node.attrib:
            x = float(node.attrib['x'])
        if y in node.attrib:
            y = float(node.attrib['y'])
        w = float(node.attrib['width'])
        h = float(node.attrib['height'])
        p_min = torch.tensor([x, y])
        p_max = torch.tensor([x + w, x + h])
        rect = pydiffvg.Rect(p_min=p_min, p_max=p_max)
        rect.stroke_width = stroke_width
        shape_ids = torch.tensor([len(shapes)])
        shapes.append(rect)
        shape_groups.append(pydiffvg.ShapeGroup(\
            shape_ids = shape_ids,
            fill_color = new_fill_color,
            stroke_color = stroke_color,
            use_even_odd_rule = use_even_odd_rule,
            shape_to_canvas = new_transform))
    return shapes, shape_groups
Esempio n. 4
0
def my_render(curve_points, curve_widths, curve_alphas,
              circle_centers, circle_radiuses, circle_widths, circle_alphas,
              canvas_size=32, colors=None):
    dev = curve_points.device

    curve_points = 0.5*(curve_points + 1.0) * canvas_size
    circle_centers = 0.5*(circle_centers + 1.0) * canvas_size
    circle_radiuses = circle_radiuses * canvas_size / 2

    eps = 1e-4
    curve_points = curve_points + eps*torch.randn_like(curve_points)

    bs, num_strokes, num_pts, _ = curve_points.shape
    num_segments = (num_pts - 1) // 3
    num_circles = circle_centers.shape[1]
    n_out = 3 if colors is not None else 1
    output = torch.zeros(bs, n_out, canvas_size, canvas_size,
                      device=curve_points.device)

    scenes = []
    for k in range(bs):
        shapes = []
        shape_groups = []
        for p in range(num_strokes):
            points = curve_points[k, p].contiguous().cuda()
            # bezier
            num_ctrl_pts = torch.zeros(num_segments, dtype=torch.int32) + 2
            width = curve_widths[k, p].cuda()
            alpha = curve_alphas[k, p].cuda()
            if colors is not None:
                color = colors[k, p]
            else:
                color = torch.ones(3, device=alpha.device)

            color = torch.cat([color, alpha.view(1,)])

            path = pydiffvg.Path(
                num_control_points=num_ctrl_pts, points=points,
                stroke_width=width, is_closed=False)
            shapes.append(path)
            path_group = pydiffvg.ShapeGroup(
                shape_ids=torch.tensor([len(shapes) - 1]),
                fill_color=None,
                stroke_color=color)
            shape_groups.append(path_group)

        for c in range(num_circles):
            center = circle_centers[k, c]
            radius = circle_radiuses[k, c]
            width = circle_widths[k, c]
            alpha = circle_alphas[k, c]
            circle = pydiffvg.Circle(radius=radius,
                                     center=center,
                                     stroke_width=width)
            shapes.append(circle)
            if colors is not None:
                color = colors[k, p]
            else:
                color = torch.ones(3, device=alpha.device)
            color = torch.cat([color, alpha.view(1,)])

            circle_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor([len(shapes) - 1]),
                                               fill_color=torch.tensor([0, 0, 0, 0.0]),
                                               stroke_color=color,
                                               )

            shape_groups.append(circle_group)

        # Rasterize
        scenes.append((canvas_size, canvas_size, shapes, shape_groups))
        raster = render(canvas_size, canvas_size, shapes, shape_groups,
                        samples=2)
        raster = raster.permute(2, 0, 1).view(4, canvas_size, canvas_size)

        alpha = raster[3:4]
        if colors is not None:  # color output
            image = raster[:3]
            alpha = alpha.repeat(3, 1, 1)
        else:
            image = raster[:1]

        # alpha compositing
        image = image*alpha
        output[k] = image

    output = output.to(dev)

    return output, scenes
Esempio n. 5
0
def raster(all_points,
           color=[0, 0, 0, 1],
           verbose=False,
           white_background=True):
    assert len(color) == 4
    # print('1:', process.memory_info().rss*1e-6)
    render_size = 512
    paths = int(all_points.shape[0] / 3)
    bs = 1  #all_points.shape[0]
    outputs = []
    scaling = torch.zeros([1, 2])
    scaling[:, 0] = 512 / 24
    scaling[:, 1] = 512 / 24
    print(scaling)
    all_points = all_points * scaling
    num_ctrl_pts = torch.zeros(paths, dtype=torch.int32) + 2
    color = make_tensor(color)
    for k in range(bs):
        # Get point parameters from network
        shapes = []
        shape_groups = []
        points = all_points.cpu().contiguous()  # [self.sort_idx[k]]

        if verbose:
            np.random.seed(0)
            colors = np.random.rand(paths, 4)
            high = np.array((0.565, 0.392, 0.173, 1))
            low = np.array((0.094, 0.310, 0.635, 1))
            diff = (high - low) / (paths)
            colors[:, 3] = 1
            for i in range(paths):
                scale = diff * i
                color = low + scale
                color[3] = 1
                color = torch.tensor(color)
                num_ctrl_pts = torch.zeros(1, dtype=torch.int32) + 2
                if i * 3 + 4 > paths * 3:
                    curve_points = torch.stack([
                        points[i * 3], points[i * 3 + 1], points[i * 3 + 2],
                        points[0]
                    ])
                else:
                    curve_points = points[i * 3:i * 3 + 4]
                path = pydiffvg.Path(num_control_points=num_ctrl_pts,
                                     points=curve_points,
                                     is_closed=False,
                                     stroke_width=torch.tensor(4))
                path_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor([i]),
                                                 fill_color=None,
                                                 stroke_color=color)
                shapes.append(path)
                shape_groups.append(path_group)
            for i in range(paths * 3):
                scale = diff * (i // 3)
                color = low + scale
                color[3] = 1
                color = torch.tensor(color)
                if i % 3 == 0:
                    # color = torch.tensor(colors[i//3]) #green
                    shape = pydiffvg.Rect(p_min=points[i] - 8,
                                          p_max=points[i] + 8)
                    group = pydiffvg.ShapeGroup(shape_ids=torch.tensor(
                        [paths + i]),
                                                fill_color=color)

                else:
                    # color = torch.tensor(colors[i//3]) #purple
                    shape = pydiffvg.Circle(radius=torch.tensor(8.0),
                                            center=points[i])
                    group = pydiffvg.ShapeGroup(shape_ids=torch.tensor(
                        [paths + i]),
                                                fill_color=color)
                shapes.append(shape)
                shape_groups.append(group)

        else:

            path = pydiffvg.Path(num_control_points=num_ctrl_pts,
                                 points=points,
                                 is_closed=True)

            shapes.append(path)
            path_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor(
                [len(shapes) - 1]),
                                             fill_color=color,
                                             stroke_color=color)
            shape_groups.append(path_group)
        scene_args = pydiffvg.RenderFunction.serialize_scene(
            render_size, render_size, shapes, shape_groups)
        out = render(
            render_size,  # width
            render_size,  # height
            2,  # num_samples_x
            2,  # num_samples_y
            102,  # seed
            None,
            *scene_args)
        out = out.permute(2, 0,
                          1).view(4, render_size,
                                  render_size)  # [:3]#.mean(0, keepdim=True)
        outputs.append(out)
    output = torch.stack(outputs).to(all_points.device)
    alpha = output[:, 3:4, :, :]

    # map to [-1, 1]
    if white_background:
        output_white_bg = output[:, :3, :, :] * alpha + (1 - alpha)
        output = torch.cat([output_white_bg, alpha], dim=1)
    del num_ctrl_pts, color
    return output
Esempio n. 6
0
import pydiffvg
import torch
import skimage
import numpy as np

# Use GPU if available
pydiffvg.set_use_gpu(torch.cuda.is_available())

canvas_width, canvas_height = 256, 256
circle = pydiffvg.Circle(radius=torch.tensor(40.0),
                         center=torch.tensor([128.0, 128.0]),
                         stroke_width=torch.tensor(5.0))
shapes = [circle]
circle_group = pydiffvg.ShapeGroup(
    shape_ids=torch.tensor([0]),
    fill_color=torch.tensor([0.3, 0.6, 0.3, 1.0]),
    stroke_color=torch.tensor([0.6, 0.3, 0.6, 0.8]))
shape_groups = [circle_group]
scene_args = pydiffvg.RenderFunction.serialize_scene(\
    canvas_width, canvas_height, shapes, shape_groups)

render = pydiffvg.RenderFunction.apply
img = render(
    256,  # width
    256,  # height
    2,  # num_samples_x
    2,  # num_samples_y
    0,  # seed
    None,
    *scene_args)
# The output image is in linear RGB space. Do Gamma correction before saving the image.