Esempio n. 1
0
def test_linearized_mms_ldg_convergence():
    # LDG Diffusion should converge at 1st order for 1 basis_cpt
    # or at num_basis_cpts - 2 for more basis_cpts
    t = 0.0
    bc = boundary.Periodic()
    p_class = convection_hyper_diffusion.NonlinearHyperDiffusion
    p_func = p_class.linearized_manufactured_solution
    exact_solution = flux_functions.AdvectingSine(offset=2.0)
    for diffusion_function in diffusion_functions:
        problem = p_func(exact_solution, diffusion_function)
        exact_time_derivative = problem.exact_time_derivative(
            exact_solution, t)
        for num_basis_cpts in [1] + list(range(5, 6)):
            for basis_class in basis.BASIS_LIST:
                error_list = []
                basis_ = basis_class(num_basis_cpts)
                # 10 and 20 elems maybe not in asymptotic regime yet
                for num_elems in [20, 40]:
                    mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                    dg_solution = basis_.project(exact_solution, mesh_, t)
                    L = problem.ldg_operator(dg_solution, t, bc, bc)
                    dg_error = math_utils.compute_dg_error(
                        L, exact_time_derivative)
                    error = dg_error.norm()
                    error_list.append(error)
                    # plot.plot_dg_1d(L, function=exact_time_derivative)
                order = utils.convergence_order(error_list)
                # if already at machine precision don't check convergence
                if error_list[-1] > tolerance:
                    if num_basis_cpts == 1:
                        assert order >= 1
                    else:
                        assert order >= num_basis_cpts - 4
Esempio n. 2
0
def test_linearized_mms_ldg_irk():
    # g = functions.Sine(offset=2.0)
    # r = -1.0
    # exact_solution = flux_functions.ExponentialFunction(g, r)
    exact_solution = flux_functions.AdvectingSine(offset=2.0)
    t_initial = 0.0
    t_final = 0.1
    exact_solution_final = lambda x: exact_solution(x, t_final)
    bc = boundary.Periodic()
    p_class = convection_hyper_diffusion.NonlinearHyperDiffusion
    p_func = p_class.linearized_manufactured_solution
    for diffusion_function in diffusion_functions:
        problem = p_func(exact_solution, diffusion_function)
        for num_basis_cpts in range(1, 3):
            irk = implicit_runge_kutta.get_time_stepper(num_basis_cpts)
            for basis_class in basis.BASIS_LIST:
                basis_ = basis_class(num_basis_cpts)
                error_list = []
                for i in [1, 2]:
                    if i == 1:
                        delta_t = 0.01
                        num_elems = 20
                    else:
                        delta_t = 0.005
                        num_elems = 40
                    mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                    dg_solution = basis_.project(problem.initial_condition,
                                                 mesh_)
                    # time_dependent_matrix time does matter
                    matrix_function = lambda t: problem.ldg_matrix(
                        dg_solution, t, bc, bc, bc, bc)
                    rhs_function = problem.get_implicit_operator(
                        bc, bc, bc, bc)
                    solve_function = time_stepping.get_solve_function_matrix(
                        matrix_function)
                    new_solution = time_stepping.time_step_loop_implicit(
                        dg_solution,
                        t_initial,
                        t_final,
                        delta_t,
                        irk,
                        rhs_function,
                        solve_function,
                    )
                    error = math_utils.compute_error(new_solution,
                                                     exact_solution_final)
                    error_list.append(error)
                    # plot.plot_dg_1d(new_solution, function=exact_solution_final)
                order = utils.convergence_order(error_list)
                assert order >= num_basis_cpts
Esempio n. 3
0
def test_nonlinear_mms_ldg_irk():
    exact_solution = flux_functions.AdvectingSine(amplitude=0.1, offset=0.15)
    t_initial = 0.0
    t_final = 0.1
    exact_solution_final = lambda x: exact_solution(x, t_final)
    bc = boundary.Periodic()
    p_func = thin_film.ThinFilmDiffusion.manufactured_solution
    problem = p_func(exact_solution)
    for num_basis_cpts in range(1, 3):
        irk = implicit_runge_kutta.get_time_stepper(num_basis_cpts)
        cfl = 0.5
        for basis_class in basis.BASIS_LIST:
            basis_ = basis_class(num_basis_cpts)
            error_list = []
            n = 40
            for num_elems in [n, 2 * n]:
                mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                delta_t = cfl * mesh_.delta_x / exact_solution.wavespeed
                dg_solution = basis_.project(problem.initial_condition, mesh_)
                # time_dependent_matrix time does matter
                matrix_function = lambda t, q: problem.ldg_matrix(q, t, bc, bc, bc, bc)
                rhs_function = problem.get_implicit_operator(bc, bc, bc, bc)
                solve_function = time_stepping.get_solve_function_picard(
                    matrix_function, num_basis_cpts, num_elems * num_basis_cpts
                )
                new_solution = time_stepping.time_step_loop_implicit(
                    dg_solution,
                    t_initial,
                    t_final,
                    delta_t,
                    irk,
                    rhs_function,
                    solve_function,
                )
                error = math_utils.compute_error(new_solution, exact_solution_final)
                error_list.append(error)
                # plot.plot_dg_1d(new_solution, function=exact_solution_final)
            with open("thin_film_nonlinear_irk_test.yml", "a") as file:
                dict_ = dict()
                subdict = dict()
                subdict["cfl"] = cfl
                subdict["n"] = n
                subdict["error0"] = float(error_list[0])
                subdict["error1"] = float(error_list[1])
                subdict["order"] = float(np.log2(error_list[0] / error_list[1]))
                dict_[num_basis_cpts] = subdict
                yaml.dump(dict_, file, default_flow_style=False)
            order = utils.convergence_order(error_list)
            assert order >= num_basis_cpts
Esempio n. 4
0
def test_mms_operator_zero():
    # For manufactured solution the overall operator should be zero
    exact_solution = flux_functions.AdvectingSine(offset=2.0)
    nonlinear_diffusion_class = convection_hyper_diffusion.NonlinearHyperDiffusion
    for diffusion_function in diffusion_functions:
        problem = nonlinear_diffusion_class.manufactured_solution(
            exact_solution, diffusion_function)
        linearized_problem = nonlinear_diffusion_class.linearized_manufactured_solution(
            exact_solution, diffusion_function)
        assert isinstance(linearized_problem.diffusion_function,
                          flux_functions.XTFunction)
        for t in range(3):
            exact_operator = problem.exact_operator(exact_solution, t)
            values = [exact_operator(x) for x in np.linspace(-1.0, 1.0)]
            assert np.linalg.norm(values) <= tolerance

            exact_operator = linearized_problem.exact_operator(
                exact_solution, t)
            values = [exact_operator(x) for x in np.linspace(-1.0, 1.0)]
            assert np.linalg.norm(values) <= tolerance
Esempio n. 5
0
def test_mms_operator_zero():
    # For manufactured solution the overall operator should be zero
    exact_solution = flux_functions.AdvectingSine(offset=2.0)
    problem_list = []
    problem_list.append(thin_film.ThinFilm.manufactured_solution(exact_solution))
    problem_list.append(
        thin_film.ThinFilm.linearized_manufactured_solution(exact_solution)
    )
    problem_list.append(
        thin_film.ThinFilmDiffusion.linearized_manufactured_solution(exact_solution)
    )
    problem_list.append(
        thin_film.ThinFilmDiffusion.manufactured_solution(exact_solution)
    )
    assert isinstance(problem_list[1].diffusion_function, flux_functions.XTFunction)
    assert isinstance(problem_list[2].diffusion_function, flux_functions.XTFunction)
    for t in range(3):
        for problem in problem_list:
            exact_operator = problem.exact_operator(exact_solution, t)
            values = [exact_operator(x) for x in np.linspace(-1.0, 1.0)]
            assert np.linalg.norm(values) <= tolerance
Esempio n. 6
0
from pydogpack.utils import functions
from pydogpack.utils import flux_functions
from pydogpack.basis import basis
from pydogpack.mesh import mesh
from pydogpack.mesh import boundary
from apps.onedimensional.thinfilm import thin_film

import numpy as np
import yaml

if __name__ == "__main__":
    exact_solution = flux_functions.AdvectingSine(amplitude=0.1, offset=0.15)
    problem = thin_film.ThinFilm.manufactured_solution(exact_solution)
    t = 0.0
    bc = boundary.Periodic()
    n = 10
    dict_ = dict()
    for bc in [boundary.Periodic(), boundary.Extrapolation()]:
        dict_[str(bc)] = dict()
        dict_bc = dict_[str(bc)]
        for basis_class in basis.BASIS_LIST:
            dict_bc[basis_class.string] = dict()
            dict_basis = dict_bc[basis_class.string]
            for num_basis_cpts in range(1, 4):
                dict_basis[num_basis_cpts] = dict()
                dict_cpt = dict_basis[num_basis_cpts]
                basis_ = basis_class(num_basis_cpts)
                for num_elems in range(10, 90, 10):
                    mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                    dg_solution = basis_.project(problem.initial_condition, mesh_)
                    (matrix, vector) = problem.ldg_matrix(
def test_imex_linearized_mms():
    # advection with linearized diffusion
    # (q_t + q_x = (f(x, t) q_xx + s(x, t))
    exact_solution = flux_functions.AdvectingSine(amplitude=0.1, offset=0.15)
    p_class = convection_hyper_diffusion.ConvectionHyperDiffusion
    p_func = p_class.linearized_manufactured_solution
    t_initial = 0.0
    bc = boundary.Periodic()
    for diffusion_function in [squared]:
        problem = p_func(exact_solution, None, diffusion_function)
        cfl_list = [0.9, 0.15, 0.1]
        for num_basis_cpts in range(2, 4):
            imex = imex_runge_kutta.get_time_stepper(num_basis_cpts)
            cfl = cfl_list[num_basis_cpts - 1]
            n = 20
            t_final = cfl * (1.0 / n) / exact_solution.wavespeed
            exact_solution_final = lambda x: exact_solution(x, t_final)
            for basis_class in [basis.LegendreBasis1D]:
                basis_ = basis_class(num_basis_cpts)
                error_list = []
                for num_elems in [n, 2 * n]:
                    mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                    delta_t = cfl * mesh_.delta_x / exact_solution.wavespeed
                    dg_solution = basis_.project(problem.initial_condition,
                                                 mesh_)

                    # weak dg form with flux_function and source term
                    explicit_operator = problem.get_explicit_operator(bc)
                    # ldg discretization of diffusion_function
                    implicit_operator = problem.get_implicit_operator(
                        bc, bc, bc, bc, include_source=False)
                    # this is a constant matrix case
                    matrix_function = lambda t: problem.ldg_matrix(
                        dg_solution, t, bc, bc, bc, bc, include_source=False)

                    solve_operator = time_stepping.get_solve_function_matrix(
                        matrix_function)

                    final_solution = time_stepping.time_step_loop_imex(
                        dg_solution,
                        t_initial,
                        t_final,
                        delta_t,
                        imex,
                        explicit_operator,
                        implicit_operator,
                        solve_operator,
                    )

                    error = math_utils.compute_error(final_solution,
                                                     exact_solution_final)
                    error_list.append(error)
                    # plot.plot_dg_1d(final_solution, function=exact_solution_final)
                order = utils.convergence_order(error_list)
                with open("hyper_diffusion_linearized_mms_test.yml",
                          "a") as file:
                    dict_ = dict()
                    subdict = dict()
                    subdict["cfl"] = cfl
                    subdict["n"] = n
                    subdict["error0"] = float(error_list[0])
                    subdict["error1"] = float(error_list[1])
                    subdict["order"] = float(
                        np.log2(error_list[0] / error_list[1]))
                    dict_[num_basis_cpts] = subdict
                    yaml.dump(dict_, file, default_flow_style=False)
                assert order >= num_basis_cpts
Esempio n. 8
0
def test_imex_nonlinear_mms():
    wavenumber = 1.0 / 20.0
    x_left = 0.0
    x_right = 40.0
    exact_solution = flux_functions.AdvectingSine(
        amplitude=0.1, wavenumber=wavenumber, offset=0.15
    )
    p_func = thin_film.ThinFilm.manufactured_solution
    t_initial = 0.0
    bc = boundary.Periodic()
    problem = p_func(exact_solution)
    cfl_list = [0.5, 0.1, 0.1]
    n = 40
    for num_basis_cpts in range(3, 4):
        imex = imex_runge_kutta.get_time_stepper(num_basis_cpts)
        cfl = cfl_list[num_basis_cpts - 1]
        t_final = 10 * cfl * ((x_right - x_left) / n) / exact_solution.wavespeed
        exact_solution_final = lambda x: exact_solution(x, t_final)
        for basis_class in [basis.LegendreBasis1D]:
            basis_ = basis_class(num_basis_cpts)
            error_list = []
            for num_elems in [n, 2 * n]:
                mesh_ = mesh.Mesh1DUniform(x_left, x_right, num_elems)
                delta_t = cfl * mesh_.delta_x / exact_solution.wavespeed
                dg_solution = basis_.project(problem.initial_condition, mesh_)

                # weak dg form with flux_function and source term
                explicit_operator = problem.get_explicit_operator(bc)
                # ldg discretization of diffusion_function
                implicit_operator = problem.get_implicit_operator(
                    bc, bc, bc, bc, include_source=False
                )
                matrix_function = lambda t, q: problem.ldg_matrix(
                    q, t, bc, bc, bc, bc, include_source=False
                )

                solve_operator = time_stepping.get_solve_function_picard(
                    matrix_function, num_basis_cpts, num_elems * num_basis_cpts
                )

                final_solution = time_stepping.time_step_loop_imex(
                    dg_solution,
                    t_initial,
                    t_final,
                    delta_t,
                    imex,
                    explicit_operator,
                    implicit_operator,
                    solve_operator,
                )

                error = math_utils.compute_error(final_solution, exact_solution_final)
                error_list.append(error)
                # plot.plot_dg_1d(final_solution, function=exact_solution_final)
            with open("thin_film_nonlinear_mms_test.yml", "a") as file:
                dict_ = dict()
                subdict = dict()
                subdict["cfl"] = cfl
                subdict["n"] = n
                subdict["error0"] = float(error_list[0])
                subdict["error1"] = float(error_list[1])
                subdict["order"] = float(np.log2(error_list[0] / error_list[1]))
                dict_[num_basis_cpts] = subdict
                yaml.dump(dict_, file, default_flow_style=False)
            order = utils.convergence_order(error_list)
            assert order >= num_basis_cpts