Esempio n. 1
0
def test_restart_with_seed_gives_same_predictions(temp_dir, inter_max_samples):
    wrapper = gpyopt.GPyOptObjectiveWrapper(_polynomial)
    wrapper.set_variable_parameter('x', 'continuous', (-1., 1.))
    wrapper.set_fixed_parameter('d', 2)
    wrapper.set_fixed_parameter('shift', 1)
    hist_path = os.path.join(temp_dir, 'hist.csv')
    params = gpyopt.BayesianOptimizationParams(
        max_samples=inter_max_samples,
        model_type='gp',
        seed=1,
    )
    gpyopt.bayesopt(wrapper, params, hist_path)
    params.max_samples = 8
    best_1 = gpyopt.bayesopt(wrapper, params, hist_path)
    best_2 = gpyopt.bayesopt(wrapper, params)
    assert abs(best_1['x'] - best_2['x']) < 1e-5
Esempio n. 2
0
def test_simple_objective():
    wrapper = gpyopt.GPyOptObjectiveWrapper(_squared)
    wrapper.set_fixed_parameter('shift', 1.)
    wrapper.set_variable_parameter('x', 'continuous', (-1., 1.))
    params = gpyopt.BayesianOptimizationParams(
        model_type='gp',
        kernel_type='rbf',
        seed=1,
        max_samples=10,
        noise_var=0,
    )
    best_1 = gpyopt.bayesopt(wrapper, params)
    best_2 = gpyopt.bayesopt(wrapper, params)
    assert best_1['x'] == best_2['x']
    params.log10_min_diff = -3
    params.max_samples = None
    best_3 = gpyopt.bayesopt(wrapper, params)
    # note that log10_min_diff is not the same as the absolute
    # value between best results
    assert abs(_squared(best_3['x'], 1.) - 1.) < 1e-2
Esempio n. 3
0
def test_strings_are_provided():
    def _obj(mystring):
        assert isinstance(mystring, str)
        return int(mystring[0])

    wrapper = gpyopt.GPyOptObjectiveWrapper(_obj)
    wrapper.set_variable_parameter('mystring', 'categorical', '1234')
    params = gpyopt.BayesianOptimizationParams(
        initial_design_numdata=2,
        max_samples=10,
    )
    best = gpyopt.bayesopt(wrapper, params)
    assert best['mystring'] == '1'
Esempio n. 4
0
def test_can_serialize_lots_of_stuff(temp_dir):
    def _obj(**kwargs):
        return 0.

    wrapper = gpyopt.GPyOptObjectiveWrapper(_obj)
    wrapper.set_fixed_parameter('a', object())
    wrapper.set_variable_parameter('b', 'continuous', (0., 1.))
    wrapper.set_variable_parameter('c', 'discrete', (0, 1))
    d_tup = (1, None, 'None', 0., object())
    wrapper.set_variable_parameter('d', 'categorical', d_tup)
    hist_path = os.path.join(temp_dir, 'hist.csv')
    params = gpyopt.BayesianOptimizationParams(
        initial_design_samples=4,
        max_samples=5,
        seed=5,
    )
    best_1 = gpyopt.bayesopt(wrapper, params, hist_path)
    assert best_1['d'] in d_tup
    best_2 = gpyopt.bayesopt(wrapper, params, hist_path)
    assert best_1['c'] == best_2['c']
    assert abs(best_1['b'] - best_2['b']) < 1e-5
    assert best_1['d'] == best_2['d']
Esempio n. 5
0
def test_multiple_variable_types():
    wrapper = gpyopt.GPyOptObjectiveWrapper(_polynomial)
    wrapper.set_variable_parameter('shift', 'categorical', (10, 0, 1))
    wrapper.set_variable_parameter('x', 'continuous', (.1, .9))
    wrapper.set_variable_parameter('d', 'discrete', tuple(range(-1, 5)))
    params = gpyopt.BayesianOptimizationParams(
        model_type='gp',
        seed=1,
        log10_min_diff=-2,
        initial_design_samples=10,
        noise_var=0,
    )
    best = gpyopt.bayesopt(wrapper, params)
    assert not best['shift']
    assert best['d'] == 5
Esempio n. 6
0
def test_constraints():
    wrapper = gpyopt.GPyOptObjectiveWrapper(_enforcer_objective)
    wrapper.set_variable_parameter('int_', 'discrete', tuple(range(100)))
    wrapper.set_variable_parameter('day', 'categorical', ('monday', 'tuesday'))
    params = gpyopt.BayesianOptimizationParams(
        initial_design_samples=4,
        max_iterations=5,
        seed=2,
    )
    best = gpyopt.bayesopt(wrapper,
                           params,
                           constraints=[
                               _day_cannot_be_tuesday,
                               _int_not_odd,
                           ])
    assert best['int_'] in range(0, 100, 2)
    assert best['day'] == 'monday'