def test_negloglike(): AR = (np.array([1, .5, .3, 0, .2, .1, 0, .2, .05, 1, .5, .3]), np.array([3, 2, 2])) MA = (np.array([1, .2, 0, .1, 0, 0, 1, .3]), np.array([2, 2, 2])) arma = ARMA(A=AR, B=MA, C=None) # Noise generated with R for comparison # ( setRNG(seed=0); noise <- makeTSnoise(10, 2, 2) ) w0_series0 = np.array([1.2629543, -0.3262334]) w0_series1 = np.array([-1.1476570, -0.2894616]) w_series0 = np.array( [1.329799263, 1.272429321, 0.414641434, -1.539950042, -0.928567035, -0.294720447, -0.005767173, 2.404653389, 0.763593461, -0.799009249]) w_series1 = np.array( [-0.2992151, -0.4115108, 0.2522234, -0.8919211, 0.4356833, -1.2375384, -0.2242679, 0.3773956, 0.1333364, 0.8041895]) noise = (np.vstack([w0_series0, w0_series1]).T, np.vstack([w_series0, w_series1]).T) result = arma.simulate(sampleT=10, noise=noise) pred = arma.forecast(y=result) negloglike = stats.negloglike(pred, result) R_negloglike = 25.4247320523 nptest.assert_almost_equal(negloglike, R_negloglike)
def test_negloglike(): AR = (np.array([1, .5, .3, 0, .2, .1, 0, .2, .05, 1, .5, .3]), np.array([3, 2, 2])) MA = (np.array([1, .2, 0, .1, 0, 0, 1, .3]), np.array([2, 2, 2])) arma = ARMA(A=AR, B=MA, C=None) # Noise generated with R for comparison # ( setRNG(seed=0); noise <- makeTSnoise(10, 2, 2) ) w0_series0 = np.array([1.2629543, -0.3262334]) w0_series1 = np.array([-1.1476570, -0.2894616]) w_series0 = np.array([ 1.329799263, 1.272429321, 0.414641434, -1.539950042, -0.928567035, -0.294720447, -0.005767173, 2.404653389, 0.763593461, -0.799009249 ]) w_series1 = np.array([ -0.2992151, -0.4115108, 0.2522234, -0.8919211, 0.4356833, -1.2375384, -0.2242679, 0.3773956, 0.1333364, 0.8041895 ]) noise = (np.vstack([w0_series0, w0_series1]).T, np.vstack([w_series0, w_series1]).T) result = arma.simulate(sampleT=10, noise=noise) pred = arma.forecast(y=result) negloglike = stats.negloglike(pred, result) R_negloglike = 25.4247320523 nptest.assert_almost_equal(negloglike, R_negloglike)
def test_forecast(): AR = (np.array([1, .5, .3, 0, .2, .1, 0, .2, .05, 1, .5, .3]), np.array([3, 2, 2])) MA = (np.array([1, .2, 0, .1, 0, 0, 1, .3]), np.array([2, 2, 2])) arma = ARMA(A=AR, B=MA, C=None) series0 = np.array([ 1.58239012, 0.85063747, -0.11981462, -1.69017627, -0.19912156, 0.02830831, 0.16284912, 2.42364792, -0.15007052, -1.27531927 ]) series1 = np.array([ -0.5172168, -0.4261651, 0.2958942, -0.8559883, 0.7033546, -1.0857290, -0.2788928, 0.7393030, -0.2999778, 0.6363970 ]) R_result = np.vstack([series0, series1]).T # One ahead forecast generated with R # ( arma <- l(arma, R_result); R_pred <- arma$estimates$pred ) pred0 = np.array([ 0.00000000, -0.37127368, -0.54455969, -0.14820550, 0.72904133, 0.32310958, 0.16860013, 0.01899776, -0.91366463, -0.47630989 ]) pred1 = np.array([ 0.00000000, -0.05479565, 0.05066136, 0.03484596, 0.26779526, 0.15181266, -0.05463401, 0.36191171, -0.43331575, -0.16779191 ]) R_pred = np.vstack([pred0, pred1]).T pred = arma.forecast(y=R_result) nptest.assert_almost_equal(R_pred, pred) # One ahead forecast with trend generated with R # ( arma_trend <- l(arma_trend, R_result_trend); # R_pred_trend <- arma_trend$estimates$pred ) TREND = np.array([1., 2.]) arma_trend = ARMA(A=AR, B=MA, C=None, TREND=TREND) series0 = np.array([ 2.5823901, 0.9506375, 0.2701854, -1.1311763, 0.1139784, 0.4486183, 0.6048481, 2.8091458, 0.2663152, -0.8590244 ]) series1 = np.array([ 1.48278321, 0.37383493, 1.17589420, 0.37601165, 1.67255459, -0.05844899, 0.80133515, 1.76057423, 0.74401876, 1.68619050 ]) R_result_trend = np.vstack([series0, series1]).T pred0 = np.array([ 1.00000000, -0.27127368, -0.15455969, 0.41079450, 1.04214133, 0.74341958, 0.61059913, 0.40449566, -0.49727892, -0.06001498 ]) pred1 = np.array([ 2.00000000, 0.7452043, 0.9306614, 1.2668460, 1.2369953, 1.1790927, 1.0255940, 1.3831829, 0.6106808, 0.8820015 ]) R_pred_trend = np.vstack([pred0, pred1]).T pred_trend = arma_trend.forecast(y=R_result_trend) nptest.assert_almost_equal(R_pred_trend, pred_trend)
def test_forecast(): AR = (np.array([1, .5, .3, 0, .2, .1, 0, .2, .05, 1, .5, .3]), np.array([3, 2, 2])) MA = (np.array([1, .2, 0, .1, 0, 0, 1, .3]), np.array([2, 2, 2])) arma = ARMA(A=AR, B=MA, C=None) series0 = np.array( [1.58239012, 0.85063747, -0.11981462, -1.69017627, -0.19912156, 0.02830831, 0.16284912, 2.42364792, -0.15007052, -1.27531927]) series1 = np.array( [-0.5172168, -0.4261651, 0.2958942, -0.8559883, 0.7033546, -1.0857290, -0.2788928, 0.7393030, -0.2999778, 0.6363970]) R_result = np.vstack([series0, series1]).T # One ahead forecast generated with R # ( arma <- l(arma, R_result); R_pred <- arma$estimates$pred ) pred0 = np.array( [0.00000000, -0.37127368, -0.54455969, -0.14820550, 0.72904133, 0.32310958, 0.16860013, 0.01899776, -0.91366463, -0.47630989]) pred1 = np.array( [0.00000000, -0.05479565, 0.05066136, 0.03484596, 0.26779526, 0.15181266, -0.05463401, 0.36191171, -0.43331575, -0.16779191]) R_pred = np.vstack([pred0, pred1]).T pred = arma.forecast(y=R_result) nptest.assert_almost_equal(R_pred, pred) # One ahead forecast with trend generated with R # ( arma_trend <- l(arma_trend, R_result_trend); # R_pred_trend <- arma_trend$estimates$pred ) TREND = np.array([1., 2.]) arma_trend = ARMA(A=AR, B=MA, C=None, TREND=TREND) series0 = np.array( [2.5823901, 0.9506375, 0.2701854, -1.1311763, 0.1139784, 0.4486183, 0.6048481, 2.8091458, 0.2663152, -0.8590244]) series1 = np.array( [1.48278321, 0.37383493, 1.17589420, 0.37601165, 1.67255459, -0.05844899, 0.80133515, 1.76057423, 0.74401876, 1.68619050]) R_result_trend = np.vstack([series0, series1]).T pred0 = np.array( [1.00000000, -0.27127368, -0.15455969, 0.41079450, 1.04214133, 0.74341958, 0.61059913, 0.40449566, -0.49727892, -0.06001498]) pred1 = np.array( [2.00000000, 0.7452043, 0.9306614, 1.2668460, 1.2369953, 1.1790927, 1.0255940, 1.3831829, 0.6106808, 0.8820015]) R_pred_trend = np.vstack([pred0, pred1]).T pred_trend = arma_trend.forecast(y=R_result_trend) nptest.assert_almost_equal(R_pred_trend, pred_trend)
def test_print(): AR = (np.array([1, .5, .31, 0, .2, .1, 0, .2, .01, 1, .49, .3]), np.array([3, 2, 2])) MA = (np.array([1, .21, 0, .1, 0, -0.01, 1, .3]), np.array([2, 2, 2])) X = (np.array([1, .3, 0, .05, 0, 0.1, 1, .3]), np.array([2, 2, 2])) TREND = [[1, 21], [2, 22], [3, 23], [4, 24]] arma = ARMA(A=AR, B=MA, C=X, TREND=TREND) print(arma) arma = ARMA(A=AR, B=MA, C=X, TREND=[1, 2]) print(arma) AR = (np.array([1, .5, .31, 0, .2, .1, 0, .2, .01, 1, .49, .3]), np.array([3, 2, 2])) MA = (np.array([1., 2., 3., 0, 0, 0, 0, 0, 0, 1., 2., 3.]), np.array([3, 2, 2])) arma = ARMA(A=AR, B=MA) print(arma)
def test_non_consts(): AR = (np.array([1, .5, .3, 0, .2, .1, 0, .2, .05, 1, .5, .3]), np.array([3, 2, 2])) MA = (np.array([1, .2, 0, .1, 0, 0, 1, .3]), np.array([2, 2, 2])) arma = ARMA(A=AR, B=MA, C=None) arma.Aconst[:, 0, 0] = True arma.Bconst[0, :, 0] = True new_values = np.repeat(-999., 9 + 6) arma.non_consts = new_values result_A = np.array([1, .5, .3, -999., -999., -999., -999., -999., -999., -999., -999., -999.]).reshape((3, 2, 2), order='F') nptest.assert_array_equal(arma.A, result_A) result_B = np.array([1, -999., 0, -999., -999., -999., -999., -999.]).reshape((2, 2, 2), order='F') nptest.assert_array_equal(arma.B, result_B) set_values = arma.non_consts nptest.assert_array_equal(set_values, new_values)
def test_est_params(): rand_state = np.random.RandomState() rand_state.seed(42) # Generate a target series AR = (np.array([1, 0.3, 0.5]), np.array([3, 1, 1])) MA = (np.array([1, .1]), np.array([2, 1, 1])) arma = ARMA(A=AR, B=MA, C=None, rand_state=rand_state) series = arma.simulate(sampleT=1000) # Estimate parameters by simulated series AR_est = (np.array([1, .01, .01]), np.array([3, 1, 1])) MA_est = (np.array([1, .01]), np.array([2, 1, 1])) arma_est = ARMA(A=AR_est, B=MA_est, C=None) arma_est.fix_constants() arma_est.est_params(y=series) nptest.assert_almost_equal(arma_est.A, arma.A, decimal=1) nptest.assert_almost_equal(arma_est.B, arma.B, decimal=1)
def test_non_consts(): AR = (np.array([1, .5, .3, 0, .2, .1, 0, .2, .05, 1, .5, .3]), np.array([3, 2, 2])) MA = (np.array([1, .2, 0, .1, 0, 0, 1, .3]), np.array([2, 2, 2])) arma = ARMA(A=AR, B=MA, C=None) arma.Aconst[:, 0, 0] = True arma.Bconst[0, :, 0] = True new_values = np.repeat(-999., 9 + 6) arma.non_consts = new_values result_A = np.array([ 1, .5, .3, -999., -999., -999., -999., -999., -999., -999., -999., -999. ]).reshape((3, 2, 2), order='F') nptest.assert_array_equal(arma.A, result_A) result_B = np.array([1, -999., 0, -999., -999., -999., -999., -999.]).reshape((2, 2, 2), order='F') nptest.assert_array_equal(arma.B, result_B) set_values = arma.non_consts nptest.assert_array_equal(set_values, new_values)
def test_fix_constants(): AR = (np.array([1, .5, .31, 0, .2, .1, 0, .2, .01, 1, .49, .3]), np.array([3, 2, 2])) MA = (np.array([1, .21, 0, .1, 0, -0.01, 1, .3]), np.array([2, 2, 2])) arma = ARMA(A=AR, B=MA, C=None) arma.fix_constants() Aconst = np.array( [[[True, True], [True, True]], [[True, True], [True, False]], [[False, False], [True, True]]], dtype=bool) nptest.assert_array_equal(arma.Aconst, Aconst) Bconst = np.array( [[[True, True], [True, True]], [[False, False], [True, True]]], dtype=bool) nptest.assert_array_equal(arma.Bconst, Bconst)
def test_forecast_with_horizon(): rand_state = np.random.RandomState() rand_state.seed(0) AR = (np.array([1, 0.3, 0.5]), np.array([3, 1, 1])) MA = (np.array([1, .1]), np.array([2, 1, 1])) TREND = np.arange(1, 21)[:, np.newaxis] arma = ARMA(A=AR, B=MA, C=None, TREND=TREND, rand_state=rand_state) truth = np.array([ 2.4560947, 2.6685808, 1.5132628, 0.7132449, 2.9468331, 4.3717505, 4.1798191, 6.9642557, 5.8248726, 4.0477605, 5.6456776, 7.8781892, 7.4855431, 7.3738101, 9.2561578 ]) result = np.array([ 1., 1.408781, 1.097358, 2.253321, 3.875388, 4.666472, 4.185586, 4.559602, 5.061279, 4.846770, 6.793335, 8.167651, 7.784758, 7.785321, 9.003934, 9.561470, 9.503480, 10.368221, 11.137794, 11.474551 ]) pred = arma.forecast(truth, horizon=5) nptest.assert_almost_equal(pred, result[:, np.newaxis], decimal=5)
def test_simulate_arma(): AR = (np.array([1, .5, .3, 0, .2, .1, 0, .2, .05, 1, .5, .3]), np.array([3, 2, 2])) MA = (np.array([1, .2, 0, .1, 0, 0, 1, .3]), np.array([2, 2, 2])) arma = ARMA(A=AR, B=MA, C=None) # noise generated with R for comparison # ( setRNG(seed=0); noise <- makeTSnoise(10, 2, 2) ) w0_series0 = np.array([1.2629543, -0.3262334]) w0_series1 = np.array([-1.1476570, -0.2894616]) w_series0 = np.array([ 1.329799263, 1.272429321, 0.414641434, -1.539950042, -0.928567035, -0.294720447, -0.005767173, 2.404653389, 0.763593461, -0.799009249 ]) w_series1 = np.array([ -0.2992151, -0.4115108, 0.2522234, -0.8919211, 0.4356833, -1.2375384, -0.2242679, 0.3773956, 0.1333364, 0.8041895 ]) noise = (np.vstack([w0_series0, w0_series1]).T, np.vstack([w_series0, w_series1]).T) # R simulation results ( arma <- ARMA(A=AR, B=MA, C=NULL); # R_result <- simulate(arma, noise=noise, sampleT=10) ) series0 = np.array([ 1.58239012, 0.85063747, -0.11981462, -1.69017627, -0.19912156, 0.02830831, 0.16284912, 2.42364792, -0.15007052, -1.27531927 ]) series1 = np.array([ -0.5172168, -0.4261651, 0.2958942, -0.8559883, 0.7033546, -1.0857290, -0.2788928, 0.7393030, -0.2999778, 0.6363970 ]) R_result = np.vstack([series0, series1]).T result = arma.simulate(sampleT=10, noise=noise) nptest.assert_almost_equal(result, R_result) # R simulations results with trend ( TREND <- c(1,2); # arma_trend <- ARMA(A=AR, B=MA, C=NULL, TREND=TREND); # R_result_trend <- simulate(arma_trend, noise=noise, sampleT=sampleT) ) TREND = np.array([1., 2.]) arma = ARMA(A=AR, B=MA, C=None, TREND=TREND) series0 = np.array([ 2.5823901, 0.9506375, 0.2701854, -1.1311763, 0.1139784, 0.4486183, 0.6048481, 2.8091458, 0.2663152, -0.8590244 ]) series1 = np.array([ 1.48278321, 0.37383493, 1.17589420, 0.37601165, 1.67255459, -0.05844899, 0.80133515, 1.76057423, 0.74401876, 1.68619050 ]) R_result = np.vstack([series0, series1]).T result = arma.simulate(sampleT=10, noise=noise) nptest.assert_almost_equal(result, R_result) # R simulations results with trend and external series # arma_trend_ext <- ARMA(A=AR, B=MA, C=X, TREND=TREND) # input0 <- array(c(0.1, 0.2, 0.15, 0.05), dim=c(2,2)) # input <- array(c(0.1*c(1:10), 0.05*c(1:10)), dim=c(10,2)) # R_result_trend_ext <- simulate(arma_trend_ext, noise=noise, # sampleT=sampleT, input0=input0, input=input) X = (np.array([1, .3, 0, .05, 0, 0.1, 1, .3]), np.array([2, 2, 2])) arma = ARMA(A=AR, B=MA, C=X, TREND=TREND) input0 = np.array([0.1, 0.2, 0.15, 0.05]).reshape((2, 2), order='F') input = np.hstack([0.1 * np.arange(1, 11), 0.05 * np.arange(1, 11)]) input = input.reshape((10, 2), order='F') series0 = np.array([ 2.7273901, 1.0931375, 0.5122354, -0.8113013, 0.4892429, 0.9042891, 1.1312726, 3.4036172, 0.9345114, -0.1201090 ]) series1 = np.array([ 1.5827832, 0.4148349, 1.2723942, 0.5128017, 1.8170296, 0.1212361, 1.0094895, 1.9917395, 1.0044531, 1.9735374 ]) R_result = np.vstack([series0, series1]).T result = arma.simulate(sampleT=10, noise=noise, u0=input0, u=input) nptest.assert_almost_equal(result, R_result)
def test_arma_construction(): AR = ([1, .5, .3, 0, .2, .1, 0, .2, .05, 1, .5, .3], [3, 2, 2]) MA = ([1, .2, 0, .1, 0, 0, 1, .3], [2, 2, 2]) X = ([1, 2, 3, 4, 5, 6], [1, 2, 3]) # Check construction ARMA(A=AR, B=MA) ARMA(A=AR) ARMA(A=AR, B=MA, C=X) MA = ([1, 0.2, 0, .1], [2, 2, 1]) X = ([1, 2, 3, 4, 5, 6], [2, 1, 3]) with pytest.raises(ARMAError): ARMA(A=AR, B=MA) ARMA(A=AR, C=X) AR = ([1, .5, .3, 0, .2, .1, 0, .2, .05, 1, .5, .3], [3, 2, 2]) MA = ([1, 2, 0, .1, 0, 0, 1, .3], [2, 2, 2]) TREND = [1, 2] ARMA(A=AR, B=MA, TREND=TREND) TREND = [[1, 2], [3, 4]] ARMA(A=AR, B=MA, TREND=TREND) TREND = [[1, 2], [3, 4], [4, 5]] ARMA(A=AR, B=MA, TREND=TREND) TREND = [1, 2, 3] # give a (3,) array while expecting a (2,) array as p = 2 with pytest.raises(ARMAError): ARMA(A=AR, B=MA, TREND=TREND) TREND = [[1, 2, 3], [1, 2, 3], [1, 2, 3]] # give a (3, 3) array while expect a (X, 2) array as p = 2 with pytest.raises(ARMAError): ARMA(A=AR, B=MA, TREND=TREND) TREND = [[[1, 2, 3], [1, 2, 3], [1, 2, 3]], [[1, 2, 3], [1, 2, 3], [1, 2, 3]], [[1, 2, 3], [1, 2, 3], [1, 2, 3]]] # give a (3, 3, 3) array while expect a 2-d matrix with pytest.raises(ARMAError): ARMA(A=AR, B=MA, TREND=TREND)