Esempio n. 1
0
    def _helper_test_base_writer(data, metadata, metadata_is_model):
        csv_path = metadata['path']
        metadata_path = csv_path + '.json'
        if metadata_is_model:
            metadata = MetaDataModel(metadata)

        if os.path.isfile(csv_path):
            os.remove(path=csv_path)
        if os.path.isfile(csv_path):
            os.remove(path=metadata_path)

        writer = BaseFileWriter()
        writer.write(data=data, metadata=metadata)

        reader = BaseFileReader()
        timestamps, new_data, columns = reader.read(metadata=metadata)
        np.testing.assert_array_equal(data, new_data)

        with open(metadata_path, 'r') as fd:
            new_metadata = json.load(fd)

        # NOTE: json.dumps(MetaDataModel(metadata_dict).data) is not equal json.dumps(metadata_dict)
        if metadata_is_model:
            metadata_comparable = json.dumps(metadata.data)
            new_metadata_comparable = json.dumps(
                MetaDataModel(new_metadata).data)
        else:
            metadata_comparable = json.dumps(metadata)
            new_metadata_comparable = json.dumps(new_metadata)

        if metadata_comparable != new_metadata_comparable:
            raise ValueError(
                'Saving metadata failed! (src and dest is unmatch)')
Esempio n. 2
0
    def write(self, metadata=None, data=None, model_kwargs=None, **kwargs):
        """Write a file which corresponds to the given metadata.

        Args:
            metadata (dict or MetaDataModel): metadata of the data to save
            data (numpy array): data
            model_kwargs (dict): kwargs to pass to the selected model

        Returns:
            void

        """
        if model_kwargs is None:
            model_kwargs = {}

        # Check metadata is valid
        if metadata is None:
            raise ValueError('Metadata must be specified')
        if type(metadata) is dict:
            if 'path' not in metadata.keys():
                raise ValueError('Metadata must have path key')
            else:
                metadata = MetaDataModel(metadata)
        elif type(metadata) is MetaDataModel:
            pass
        else:
            raise ValueError('Type of metadata must be dict or MetaDataModel')

        metadata.save(metadata.data['path'] + metadata._file_extensions[0])

        # Select a suitable model and save data
        self.model = self._select_model(metadata)
        self.model = self.model(metadata=metadata, data=data, **model_kwargs)
        self.model.save()
Esempio n. 3
0
def test_forecast_model():
    """Run the ForecastCsvModel test."""
    meta_path = 'test/records/forecast_model_test/forecast_test.csv.json'

    from pydtk.models import MetaDataModel
    from pydtk.models.csv import ForecastCsvModel
    import numpy as np

    # load metadata
    metadata = MetaDataModel()
    metadata.load(meta_path)

    # load
    forecast_model = ForecastCsvModel(metadata=metadata)
    forecast_model.load()

    assert isinstance(forecast_model.to_ndarray(), np.ndarray)

    forecast_model.save('/tmp/test_forecast.csv')

    from datetime import datetime

    strp_foramt = "%Y/%m/%d %H:%M:%S"

    forecast_model.load(
        start_timestamp=datetime.strptime("2020/11/03 00:30:00",
                                          strp_foramt).timestamp(),
        end_timestamp=datetime.strptime("2020/11/03 01:20:00",
                                        strp_foramt).timestamp(),
    )

    assert isinstance(forecast_model.to_ndarray(), np.ndarray)

    forecast_model.save("/tmp/test_forecast_query.csv")
Esempio n. 4
0
def test_create_db_v3_with_env_var():
    """Create DB of records directory."""
    import os
    from pydtk.db import V3DBHandler
    from pydtk.models import MetaDataModel

    # Set environment variables
    os.environ['PYDTK_META_DB_ENGINE'] = 'sqlite'
    os.environ['PYDTK_META_DB_HOST'] = 'test/test_v3_env.db'

    handler = V3DBHandler(db_class='meta', base_dir_path='test')

    paths = [
        'test/records/016_00000000030000000240/data/camera_01_timestamps.csv.json',
    ]

    # Load metadata and add to DB
    for path in paths:
        metadata = MetaDataModel()
        metadata.load(path)
        handler.add_data(metadata.data)

    # Save
    handler.save(remove_duplicates=True)

    assert os.path.exists('test/test_v3_env.db')
Esempio n. 5
0
def _test_create_db():
    """Create DB of records directory."""
    from pydtk.db import V1MetaDBHandler
    from pydtk.models import MetaDataModel

    handler = V1MetaDBHandler('test/meta_db.arrow')

    paths = [
        'test/records/016_00000000030000000240/data/camera_01_timestamps.csv.json',
        'test/records/B05_17000000010000000829/data/records.bag.json',
        'test/records/sample/data/records.bag.json'
    ]

    # Load metadata and add to DB
    for path in paths:
        metadata = MetaDataModel()
        metadata.load(path)
        handler.add_data(metadata.data)

    # Get dfs
    _ = handler.get_content_df()
    _ = handler.get_file_df()
    _ = handler.get_record_id_df()

    # Save
    handler.save()
Esempio n. 6
0
def _test_create_db_v2():
    """Create DB of records directory."""
    from pydtk.db import V2MetaDBHandler
    from pydtk.models import MetaDataModel

    handler = V2MetaDBHandler(db_engine='sqlite',
                              db_host='test/test_v2.db',
                              base_dir_path='test')

    paths = [
        'test/records/016_00000000030000000240/data/camera_01_timestamps.csv.json',
        'test/records/B05_17000000010000000829/data/records.bag.json',
        'test/records/sample/data/records.bag.json'
    ]

    # Load metadata and add to DB
    for path in paths:
        metadata = MetaDataModel()
        metadata.load(path)
        handler.add_data(metadata.data, check_unique=True)

    # Get dfs
    _ = handler.get_content_df()
    _ = handler.get_file_df()
    _ = handler.get_record_id_df()

    # Save
    handler.save(remove_duplicates=True)
Esempio n. 7
0
def _add_data_from_stdin(handler):
    data = json.load(sys.stdin)
    if isinstance(data, dict):
        metadata = MetaDataModel(data=data)
        handler.add_data(metadata.data)
    elif isinstance(data, list):
        for element in data:
            metadata = MetaDataModel(data=element)
            handler.add_data(metadata.data)
Esempio n. 8
0
 def load_metadata(self, path):
     """Load and return metadata."""
     metadata = None
     for ext in MetaDataModel._file_extensions:
         metadata_filepath = path + ext
         if os.path.isfile(metadata_filepath):
             metadata = MetaDataModel()
             metadata.load(metadata_filepath)
     if metadata is None:
         raise IOError('No metadata found for file: {}'.format(path))
     return metadata
Esempio n. 9
0
def test_separated_data():
    """Run the base reader test."""
    import numpy as np
    from pydtk.models import MetaDataModel
    from pydtk.io import BaseFileReader
    metadata_path = 'test/records/sample/separated_data/records.bag.json'
    metadata = MetaDataModel()
    metadata.load(metadata_path)
    reader = BaseFileReader()
    timestamps, data, columns = reader.read(
        metadata=metadata, contents='/points_concat_downsampled')

    assert isinstance(data, np.ndarray)
Esempio n. 10
0
def test_load_from_metadata_dict():
    """Run the base reader test."""
    import numpy as np
    from pydtk.models import MetaDataModel
    from pydtk.io import BaseFileReader
    metadata_path = 'test/records/rosbag_model_test/data/records.bag.json'
    metadata = MetaDataModel()
    metadata.load(metadata_path)
    metadata = metadata.data
    reader = BaseFileReader()
    timestamps, data, columns = reader.read(
        metadata=metadata, contents='/vehicle/analog/speed_pulse')

    assert isinstance(data, np.ndarray)
Esempio n. 11
0
def test_std_msgs_rosbag_model():
    """Run the metadata and data loader test."""
    meta_path = 'test/records/sample/data/records.bag.json.json'
    path = 'test/records/sample/data/records.bag.json'

    from pydtk.models import MetaDataModel
    from pydtk.models.rosbag import StdMsgsRosbagModel

    # load metadata
    metadata = MetaDataModel()
    metadata.load(meta_path)

    # load
    data = StdMsgsRosbagModel(metadata=metadata)
    data.load(path, contents='/vehicle/analog/speed_pulse')
Esempio n. 12
0
def test_geometry_msgs_accel_stamped_rosbag_model():
    """Run the metadata and data loader test."""
    meta_path = 'test/records/sample/data/records.bag.json.json'
    path = 'test/records/sample/data/records.bag.json'

    from pydtk.models import MetaDataModel
    from pydtk.models.rosbag import GeometryMsgsAccelStampedRosbagModel

    # load metadata
    metadata = MetaDataModel()
    metadata.load(meta_path)

    # load
    data = GeometryMsgsAccelStampedRosbagModel(metadata=metadata)
    data.load(path, contents='/vehicle/acceleration')
Esempio n. 13
0
def test_sensor_msgs_nav_sat_fix_rosbag_model():
    """Run the metadata and data loader test."""
    meta_path = 'test/records/sample/data/records.bag.json.json'
    path = 'test/records/sample/data/records.bag.json'

    from pydtk.models import MetaDataModel
    from pydtk.models.rosbag import SensorMsgsNavSatFixRosbagModel

    # load metadata
    metadata = MetaDataModel()
    metadata.load(meta_path)

    # load
    data = SensorMsgsNavSatFixRosbagModel(metadata=metadata)
    data.load(path, contents='/vehicle/gnss')
Esempio n. 14
0
def test_csv_model():
    """Run the metadata and data loader test."""
    meta_path = 'test/records/csv_model_test/data/test.csv.json'
    path = 'test/records/csv_model_test/data/test.csv'

    from pydtk.models import MetaDataModel
    from pydtk.models.csv import CameraTimestampCsvModel

    # load metadata
    metadata = MetaDataModel()
    metadata.load(meta_path)

    # load
    csv = CameraTimestampCsvModel(metadata=metadata)
    csv.load(path)
    csv.save('/tmp/test.csv')
Esempio n. 15
0
def test_sensor_msgs_pointcloud2_rosbag_model():
    """Run the metadata and data loader test."""
    meta_path = 'test/records/sample/data/records.bag.json'
    path = 'test/records/sample/data/records.bag'

    from pydtk.models import MetaDataModel
    from pydtk.models.rosbag import SensorMsgsPointCloud2RosbagModel

    # load metadata
    metadata = MetaDataModel()
    metadata.load(meta_path)

    # load
    model = SensorMsgsPointCloud2RosbagModel(metadata=metadata)
    model.configure(fields=('x', 'y', 'z', 'intensity'))
    model.load(path, contents='/points_concat_downsampled')
Esempio n. 16
0
def test_json_model():
    """Run the GenericJsonModel test."""
    meta_path = 'test/records/json_model_test/json_test.json.json'

    from pydtk.models import MetaDataModel
    from pydtk.models.json_model import GenericJsonModel

    # load metadata
    metadata = MetaDataModel()
    metadata.load(meta_path)

    # load
    json_model = GenericJsonModel(metadata=metadata)
    json_model.load()

    assert isinstance(json_model.data, dict)

    json_model.save('/tmp/test_json.json')
Esempio n. 17
0
def test_annotation_model():
    """Run the AnnotationCsvModel test."""
    meta_path = 'test/records/annotation_model_test/annotation_test.csv.json'

    from pydtk.models import MetaDataModel
    from pydtk.models.csv import AnnotationCsvModel
    import numpy as np

    # load metadata
    metadata = MetaDataModel()
    metadata.load(meta_path)

    # load
    annotation_model = AnnotationCsvModel(metadata=metadata)
    annotation_model.load()

    assert isinstance(annotation_model.to_ndarray(), np.ndarray)

    annotation_model.save('/tmp/test_annotation.csv')
Esempio n. 18
0
    def add(self,
            target: str,
            content: str = None,
            database_id: str = 'default',
            base_dir: str = '/',
            **kwargs):
        """Add resources.

        Args:
            target (str): 'databases', 'records', 'files' or 'contents
            *
            content (str): Content to add. This must be one of the followings:
                           1. Database ID (in case of adding database)
                           2. Path to a JSON file (in case of adding metadata)
                           3. Path to a directory containing JSON files (in case of adding metadata)
                           3. Empty (in case of adding metadata)
                           In the last case, PyDTK reads STDIN as JSON to add metadata.
            database_id (str): Database ID
            base_dir (str): Base directory

        """
        _assert_target(target)

        if target in ['database', 'databases']:
            if content is not None:
                database_id = content

        # Initialize Handler
        handler = DBHandler(db_class='meta',
                            database_id=database_id,
                            base_dir_path=base_dir)

        if target not in ['database', 'databases']:
            if content is None:
                _add_data_from_stdin(handler)
            else:
                if os.path.isfile(content):
                    f = open(content, 'r')
                    data = json.load(f)
                    f.close()
                    metadata = MetaDataModel(data=data)
                    handler.add_data(metadata.data)
                elif os.path.isdir(content):
                    from pydtk.builder.meta_db import main as add_metadata_from_dir
                    add_metadata_from_dir(target_dir=content,
                                          database_id=database_id,
                                          base_dir=base_dir)
                else:
                    raise IOError('No such file or directory')

        # Save
        handler.save()

        self._handler = handler
Esempio n. 19
0
def test_metadata_model():
    """Run the metadata loader test."""
    path = 'test/records/json_model_test/json_test.json.json'

    from pydtk.models import MetaDataModel
    assert MetaDataModel.is_loadable(path)

    # load
    metadata = MetaDataModel()
    metadata.load(path)
    metadata.save('/tmp/test.json')
Esempio n. 20
0
def _get_contents_info(file_path):
    """Get contents infomation from model.

    Args:
        file_path (str): path to the file

    Returns:
        (dict): contents info

    """
    metadata = MetaDataModel(data={'path': file_path})
    model = BaseFileReader._select_model(metadata)
    contents = model.generate_contents_meta(path=file_path)
    return contents
Esempio n. 21
0
def _get_timestamps_info(file_path):
    """Get contents infomation from model.

    Args:
        file_path (str): path to the file

    Returns:
        (list): [start_timestamp, end_timestamp]

    """
    metadata = MetaDataModel(data={'path': file_path})
    model = BaseFileReader._select_model(metadata)
    timetamps_info = model.generate_timestamp_meta(path=file_path)
    return timetamps_info
Esempio n. 22
0
def test_autoware_can_msgs_can_packet_rosbag_model():
    """Run the metadata and data loader test."""
    meta_path = 'test/records/can_model_test/test.bag.json'
    path = 'test/records/can_model_test/test.bag'

    from pydtk.models import MetaDataModel
    from pydtk.models.autoware import AutowareCanMsgsCANPacketRosbagModel

    # load metadata
    metadata = MetaDataModel()
    metadata.load(meta_path)

    # load
    model = AutowareCanMsgsCANPacketRosbagModel(
        metadata=metadata,
        path_to_assign_list='test/assets/can_assign_list.csv')
    model.load(path, contents='/vehicle/can_raw')

    timestamps = model.timestamps
    data = model.to_ndarray()
    columns = model.columns

    assert len(timestamps) == len(data)
    assert len(columns) == data.shape[-1]

    # load with configuration
    model = AutowareCanMsgsCANPacketRosbagModel(metadata=metadata)
    model.configure(path_to_assign_list='test/assets/can_assign_list.csv')
    model.load(path, contents='/vehicle/can_raw')

    # retrieve
    timestamps = model.timestamps
    data = model.to_ndarray()
    columns = model.columns

    assert len(timestamps) == len(data)
    assert len(columns) == data.shape[-1]
Esempio n. 23
0
def main(target_dir,
         database_id='default',
         base_dir=None,
         output_db_engine=None,
         output_db_host=None,
         output_db_username=None,
         output_db_password=None,
         output_db_name=None,
         verbose=False):
    """Create meta_db.

    Args:
        target_dir (str): Path to database directory
        database_id (str): ID of the database (e.g. "Driving Behavior Database")
        base_dir (str): Directory path where each file-path will be based on
        output_db_engine (str): Database engine
        output_db_host (str): HOST of database
        output_db_username (str): Username for the database
        output_db_password (str): Password for the database
        output_db_name (str): Database name
        verbose (bool): Verbose mode

    """
    if verbose:
        logging.basicConfig(level=logging.DEBUG)
    else:
        logging.basicConfig(level=logging.INFO)

    # Check
    if not os.path.isdir(target_dir):
        raise IOError('No such directory: {}'.format(target_dir))

    # Select DB-Handler
    db_engine = os.environ.get('PYDTK_META_DB_ENGINE', None)
    if output_db_engine is not None:
        db_engine = output_db_engine
    if db_engine is None:
        DBHandler = V4DBHandler
    else:
        if db_engine in DB_ENGINES.keys():
            DBHandler = V4DBHandler
        else:
            DBHandler = V3DBHandler

    # Search metadata files
    t0 = time.time()
    logging.info("Searching json files...")
    json_list = _find_json(target_dir)
    t1 = time.time()
    logging.info("Found {0} files.({1:.03f} secs)".format(
        len(json_list), t1 - t0))

    # Preparation
    base_dir_path = base_dir if base_dir is not None else target_dir
    handler = DBHandler(db_class='meta',
                        db_engine=output_db_engine,
                        db_host=output_db_host,
                        db_username=output_db_username,
                        db_password=output_db_password,
                        db_name=output_db_name,
                        database_id=database_id,
                        base_dir_path=base_dir_path)

    # Append metadata to db
    logging.info('Loading metadata...')
    for path in tqdm(json_list, desc='Load metadata', leave=False):
        if not MetaDataModel.is_loadable(path):
            logging.warning(
                'Failed to load metadata file: {}, skipped'.format(path))
            continue
        metadata = MetaDataModel()
        metadata.load(path)
        handler.add_data(metadata.data)
    t2 = time.time()
    logging.info("Finished loading metadata.({0:.03f} secs)".format(t2 - t1))

    # Export
    logging.info('Saving DB file...')
    handler.save(remove_duplicates=True)
    t3 = time.time()
    logging.info("Finished saving DB file.({0:.03f} secs)".format(t3 - t2))

    # Display
    logging.info("Done.(Total: {0:.03f} secs)".format(t3 - t0))
Esempio n. 24
0
    def read(self,
             metadata=None,
             as_generator=False,
             model_kwargs=None,
             as_ndarray=True,
             **kwargs):
        """Read a file which corresponds to the given metadata.

        Args:
            metadata (MetaDataModel or dict): metadata of the data to load
            as_generator (bool): load data as a generator.
            model_kwargs (dict): kwargs to pass to the selected model

        Kwargs:
            path (str): path to a file
            contents (str or dict): content to load
            start_timestamp (float): start-timestamp
            end_timestamp (float): end-timestamp

        Returns:
            (object): an object of the corresponding model

        """
        if model_kwargs is None:
            model_kwargs = {}
        if metadata is None:
            if 'path' not in kwargs.keys():
                raise ValueError('Either metadata or path must be specified')
            # Look for the corresponding metadata file
            for ext in MetaDataModel._file_extensions:
                metadata_filepath = kwargs['path'] + ext
                if os.path.isfile(metadata_filepath):
                    metadata = MetaDataModel()
                    metadata.load(metadata_filepath)
            if metadata is None:
                raise IOError('Could not find metadata file')
        else:
            metadata = MetaDataModel(metadata)

        # Replace 'contents' in metadata to specify which content to load
        contents = metadata.data[
            'contents'] if 'contents' in metadata.data.keys() else None
        if 'contents' in kwargs.keys():
            if isinstance(kwargs['contents'], dict):
                contents = kwargs['contents']
            if isinstance(kwargs['contents'], str):
                contents = next(
                    iter([{
                        k: v
                        for k, v in contents.items() if k == kwargs['contents']
                    }]))
            if len(contents) == 0:
                raise ValueError('No corresponding contents exist')

        # Replace other attributes with the given arguments
        metadata.data.update(kwargs)
        metadata.data.update({'contents': contents})

        # Select a suitable model and load data
        self.model = self._select_model(metadata)
        self.model = self.model(metadata=metadata, **model_kwargs)
        columns = self.model.columns

        if as_generator:

            def load_sample_wise():
                for sample in self.model.load(as_generator=as_generator):
                    # Parse data
                    timestamp = np.array(sample['timestamps'])
                    data = np.array(sample['data'])
                    yield timestamp, data, columns

            return load_sample_wise()
        else:
            self.model.load()

            # Parse data
            timestamps = self.model.timestamps
            if as_ndarray:
                data = self.model.to_ndarray()
            else:
                data = self.model.data

            # Apply pre-processes
            for preprocess in self.preprocesses:
                timestamps, data = preprocess.processing(timestamps, data)

            return timestamps, data, columns