Esempio n. 1
0
def load(h):

    h.add(_.StringCodetable('typeOfFirstFixedSurface', 1, "4.5.table", _.Get('masterDir'), _.Get('localDir')))
    h.add(_.Codetable_units('unitsOfFirstFixedSurface', _.Get('typeOfFirstFixedSurface')))
    h.add(_.Codetable_title('nameOfFirstFixedSurface', _.Get('typeOfFirstFixedSurface')))
    h.add(_.Signed('scaleFactorOfFirstFixedSurface', 1))
    h.add(_.Unsigned('scaledValueOfFirstFixedSurface', 4))
    h.add(_.Codetable('typeOfSecondFixedSurface', 1, "4.5.table", _.Get('masterDir'), _.Get('localDir')))
    h.add(_.Codetable_units('unitsOfSecondFixedSurface', _.Get('typeOfSecondFixedSurface')))
    h.add(_.Codetable_title('nameOfSecondFixedSurface', _.Get('typeOfSecondFixedSurface')))
    h.add(_.Signed('scaleFactorOfSecondFixedSurface', 1))
    h.add(_.Unsigned('scaledValueOfSecondFixedSurface', 4))
    h.add(_.Transient('pressureUnits', "hPa"))

    def typeOfLevel_inline_concept(h):
        def wrapped(h):

            typeOfFirstFixedSurface = h.get_l('typeOfFirstFixedSurface')
            typeOfSecondFixedSurface = h.get_l('typeOfSecondFixedSurface')

            if typeOfFirstFixedSurface == 1 and typeOfSecondFixedSurface == 255:
                return 'surface'

            if typeOfFirstFixedSurface == 2 and typeOfSecondFixedSurface == 255:
                return 'cloudBase'

            if typeOfFirstFixedSurface == 3 and typeOfSecondFixedSurface == 255:
                return 'cloudTop'

            if typeOfFirstFixedSurface == 4 and typeOfSecondFixedSurface == 255:
                return 'isothermZero'

            if typeOfFirstFixedSurface == 5 and typeOfSecondFixedSurface == 255:
                return 'adiabaticCondensation'

            if typeOfFirstFixedSurface == 6 and typeOfSecondFixedSurface == 255:
                return 'maxWind'

            if typeOfFirstFixedSurface == 7 and typeOfSecondFixedSurface == 255:
                return 'tropopause'

            if typeOfFirstFixedSurface == 8 and typeOfSecondFixedSurface == 255:
                return 'nominalTop'

            if typeOfFirstFixedSurface == 9 and typeOfSecondFixedSurface == 255:
                return 'seaBottom'

            if typeOfFirstFixedSurface == 10 and typeOfSecondFixedSurface == 255:
                return 'atmosphere'

            if typeOfFirstFixedSurface == 20 and typeOfSecondFixedSurface == 255:
                return 'isothermal'

            pressureUnits = h.get_s('pressureUnits')

            if typeOfFirstFixedSurface == 100 and typeOfSecondFixedSurface == 255 and pressureUnits == "Pa":
                return 'isobaricInPa'

            if typeOfFirstFixedSurface == 100 and pressureUnits == "hPa" and typeOfSecondFixedSurface == 255:
                return 'isobaricInhPa'

            if typeOfFirstFixedSurface == 100 and typeOfSecondFixedSurface == 100:
                return 'isobaricLayer'

            if typeOfFirstFixedSurface == 101 and typeOfSecondFixedSurface == 255:
                return 'meanSea'

            if typeOfFirstFixedSurface == 102 and typeOfSecondFixedSurface == 255:
                return 'heightAboveSea'

            if typeOfFirstFixedSurface == 102 and typeOfSecondFixedSurface == 102:
                return 'heightAboveSeaLayer'

            if typeOfFirstFixedSurface == 103 and typeOfSecondFixedSurface == 255:
                return 'heightAboveGround'

            if typeOfFirstFixedSurface == 103 and typeOfSecondFixedSurface == 103:
                return 'heightAboveGroundLayer'

            if typeOfFirstFixedSurface == 104 and typeOfSecondFixedSurface == 255:
                return 'sigma'

            if typeOfFirstFixedSurface == 104 and typeOfSecondFixedSurface == 104:
                return 'sigmaLayer'

            if typeOfFirstFixedSurface == 105 and typeOfSecondFixedSurface == 255:
                return 'hybrid'

            if typeOfFirstFixedSurface == 118 and typeOfSecondFixedSurface == 255:
                return 'hybridHeight'

            if typeOfFirstFixedSurface == 105 and typeOfSecondFixedSurface == 105:
                return 'hybridLayer'

            if typeOfFirstFixedSurface == 106 and typeOfSecondFixedSurface == 255:
                return 'depthBelowLand'

            if typeOfFirstFixedSurface == 106 and typeOfSecondFixedSurface == 106:
                return 'depthBelowLandLayer'

            if typeOfFirstFixedSurface == 107 and typeOfSecondFixedSurface == 255:
                return 'theta'

            if typeOfFirstFixedSurface == 107 and typeOfSecondFixedSurface == 107:
                return 'thetaLayer'

            if typeOfFirstFixedSurface == 108 and typeOfSecondFixedSurface == 255:
                return 'pressureFromGround'

            if typeOfFirstFixedSurface == 108 and typeOfSecondFixedSurface == 108:
                return 'pressureFromGroundLayer'

            if typeOfFirstFixedSurface == 109 and typeOfSecondFixedSurface == 255:
                return 'potentialVorticity'

            if typeOfFirstFixedSurface == 111 and typeOfSecondFixedSurface == 255:
                return 'eta'

            if typeOfFirstFixedSurface == 151 and typeOfSecondFixedSurface == 255:
                return 'soil'

            if typeOfFirstFixedSurface == 151 and typeOfSecondFixedSurface == 151:
                return 'soilLayer'

            genVertHeightCoords = h.get_l('genVertHeightCoords')
            NV = h.get_l('NV')

            if genVertHeightCoords == 1 and typeOfFirstFixedSurface == 150 and NV == 6:
                return 'generalVertical'

            if genVertHeightCoords == 1 and typeOfFirstFixedSurface == 150 and typeOfSecondFixedSurface == 150 and NV == 6:
                return 'generalVerticalLayer'

            if typeOfFirstFixedSurface == 160 and typeOfSecondFixedSurface == 255:
                return 'depthBelowSea'

            if typeOfFirstFixedSurface == 1 and typeOfSecondFixedSurface == 8:
                return 'entireAtmosphere'

            if typeOfFirstFixedSurface == 1 and typeOfSecondFixedSurface == 9:
                return 'entireOcean'

            if typeOfFirstFixedSurface == 114 and typeOfSecondFixedSurface == 255:
                return 'snow'

            if typeOfFirstFixedSurface == 114 and typeOfSecondFixedSurface == 114:
                return 'snowLayer'

            scaleFactorOfFirstFixedSurface = h.get_l('scaleFactorOfFirstFixedSurface')
            scaledValueOfFirstFixedSurface = h.get_l('scaledValueOfFirstFixedSurface')

            if typeOfFirstFixedSurface == 160 and scaleFactorOfFirstFixedSurface == 0 and scaledValueOfFirstFixedSurface == 0 and typeOfSecondFixedSurface == 255:
                return 'oceanSurface'

            if typeOfFirstFixedSurface == 160 and typeOfSecondFixedSurface == 160:
                return 'oceanLayer'

            if typeOfFirstFixedSurface == 169 and typeOfSecondFixedSurface == 255:
                return 'mixedLayerDepth'

        return wrapped

    h.add(_.Concept('typeOfLevel', 'unknown', concepts=typeOfLevel_inline_concept(h)))

    h.alias('vertical.typeOfLevel', 'typeOfLevel')
    h.alias('levelType', 'typeOfFirstFixedSurface')

    if (h.get_l('typeOfSecondFixedSurface') == 255):
        h.add(_.G2level('level', _.Get('typeOfFirstFixedSurface'), _.Get('scaleFactorOfFirstFixedSurface'), _.Get('scaledValueOfFirstFixedSurface'), _.Get('pressureUnits')))
        h.add(_.Transient('bottomLevel', _.Get('level')))
        h.add(_.Transient('topLevel', _.Get('level')))
    else:
        h.add(_.G2level('topLevel', _.Get('typeOfFirstFixedSurface'), _.Get('scaleFactorOfFirstFixedSurface'), _.Get('scaledValueOfFirstFixedSurface'), _.Get('pressureUnits')))
        h.add(_.G2level('bottomLevel', _.Get('typeOfSecondFixedSurface'), _.Get('scaleFactorOfSecondFixedSurface'), _.Get('scaledValueOfSecondFixedSurface'), _.Get('pressureUnits')))
        h.alias('level', 'topLevel')

    h.alias('ls.level', 'level')
    h.alias('vertical.level', 'level')
    h.alias('vertical.bottomLevel', 'bottomLevel')
    h.alias('vertical.topLevel', 'topLevel')
    h.alias('extraDim', 'zero')

    if h._defined('extraDimensionPresent'):

        if h.get_l('extraDimensionPresent'):
            h.alias('extraDim', 'one')


    if h.get_l('extraDim'):
        h.alias('mars.levelist', 'dimension')
        h.alias('mars.levtype', 'dimensionType')
    else:
        h.add(_.Transient('tempPressureUnits', _.Get('pressureUnits')))

        if not ((h.get_s('typeOfLevel') == "surface")):

            if (h.get_s('tempPressureUnits') == "Pa"):
                h.add(_.Scale('marsLevel', _.Get('level'), _.Get('one'), _.Get('hundred')))
                h.alias('mars.levelist', 'marsLevel')
            else:
                h.alias('mars.levelist', 'level')


        h.alias('mars.levtype', 'typeOfFirstFixedSurface')

        if (h.get_s('levtype') == "sfc"):
            h.unalias('mars.levelist')

    if ((h.get_l('typeOfFirstFixedSurface') == 151) and (h.get_l('typeOfSecondFixedSurface') == 151)):
        h.alias('mars.levelist', 'bottomLevel')

    h.alias('ls.typeOfLevel', 'typeOfLevel')
Esempio n. 2
0
def load(h):

    h.add(
        _.Codetable('parameterCategory', 1, "4.1.[discipline:l].table",
                    _.Get('masterDir'), _.Get('localDir')))
    h.add(
        _.Codetable('parameterNumber', 1,
                    "4.2.[discipline:l].[parameterCategory:l].table",
                    _.Get('masterDir'), _.Get('localDir')))
    h.add(_.Codetable_units('parameterUnits', _.Get('parameterNumber')))
    h.add(_.Codetable_title('parameterName', _.Get('parameterNumber')))
    h.add(
        _.Codetable('constituentType', 2, "4.230.table", _.Get('masterDir'),
                    _.Get('localDir')))
    h.add(
        _.Codetable('sourceSinkChemicalPhysicalProcess', 1, "4.238.table",
                    _.Get('masterDir'), _.Get('localDir')))
    h.add(
        _.Codetable('typeOfGeneratingProcess', 1, "4.3.table",
                    _.Get('masterDir'), _.Get('localDir')))
    h.add(_.Unsigned('backgroundProcess', 1))
    h.alias('backgroundGeneratingProcessIdentifier', 'backgroundProcess')
    h.add(_.Unsigned('generatingProcessIdentifier', 1))
    h.add(_.Unsigned('hoursAfterDataCutoff', 2))
    h.alias('hoursAfterReferenceTimeOfDataCutoff', 'hoursAfterDataCutoff')
    h.add(_.Unsigned('minutesAfterDataCutoff', 1))
    h.alias('minutesAfterReferenceTimeOfDataCutoff', 'minutesAfterDataCutoff')
    h.add(
        _.Codetable('indicatorOfUnitOfTimeRange', 1, "4.4.table",
                    _.Get('masterDir'), _.Get('localDir')))
    h.alias('defaultStepUnits', 'one')
    _.Template('grib2/localConcepts/[centre:s]/default_step_units.def',
               True).load(h)
    h.add(_.TransientCodetable('stepUnits', 1, "stepUnits.table"))
    h.add(_.Signed('forecastTime', 4))
    h.add(
        _.StringCodetable('typeOfFirstFixedSurface', 1, "4.5.table",
                          _.Get('masterDir'), _.Get('localDir')))
    h.add(
        _.Codetable_units('unitsOfFirstFixedSurface',
                          _.Get('typeOfFirstFixedSurface')))
    h.add(
        _.Codetable_title('nameOfFirstFixedSurface',
                          _.Get('typeOfFirstFixedSurface')))
    h.add(_.Signed('scaleFactorOfFirstFixedSurface', 1))
    h.add(_.Unsigned('scaledValueOfFirstFixedSurface', 4))
    h.add(
        _.Codetable('typeOfSecondFixedSurface', 1, "4.5.table",
                    _.Get('masterDir'), _.Get('localDir')))
    h.add(
        _.Codetable_units('unitsOfSecondFixedSurface',
                          _.Get('typeOfSecondFixedSurface')))
    h.add(
        _.Codetable_title('nameOfSecondFixedSurface',
                          _.Get('typeOfSecondFixedSurface')))
    h.add(_.Signed('scaleFactorOfSecondFixedSurface', 1))
    h.add(_.Unsigned('scaledValueOfSecondFixedSurface', 4))
    h.add(_.Transient('pressureUnits', "hPa"))

    def typeOfLevel_inline_concept(h):
        def wrapped(h):

            typeOfFirstFixedSurface = h.get_l('typeOfFirstFixedSurface')
            typeOfSecondFixedSurface = h.get_l('typeOfSecondFixedSurface')

            if typeOfFirstFixedSurface == 1 and typeOfSecondFixedSurface == 255:
                return 'surface'

            if typeOfFirstFixedSurface == 2 and typeOfSecondFixedSurface == 255:
                return 'cloudBase'

            if typeOfFirstFixedSurface == 3 and typeOfSecondFixedSurface == 255:
                return 'cloudTop'

            if typeOfFirstFixedSurface == 4 and typeOfSecondFixedSurface == 255:
                return 'isothermZero'

            if typeOfFirstFixedSurface == 5 and typeOfSecondFixedSurface == 255:
                return 'adiabaticCondensation'

            if typeOfFirstFixedSurface == 6 and typeOfSecondFixedSurface == 255:
                return 'maxWind'

            if typeOfFirstFixedSurface == 7 and typeOfSecondFixedSurface == 255:
                return 'tropopause'

            if typeOfFirstFixedSurface == 8 and typeOfSecondFixedSurface == 255:
                return 'nominalTop'

            if typeOfFirstFixedSurface == 9 and typeOfSecondFixedSurface == 255:
                return 'seaBottom'

            if typeOfFirstFixedSurface == 10 and typeOfSecondFixedSurface == 255:
                return 'atmosphere'

            if typeOfFirstFixedSurface == 20 and typeOfSecondFixedSurface == 255:
                return 'isothermal'

            pressureUnits = h.get_s('pressureUnits')

            if typeOfFirstFixedSurface == 100 and typeOfSecondFixedSurface == 255 and pressureUnits == "Pa":
                return 'isobaricInPa'

            if typeOfFirstFixedSurface == 100 and pressureUnits == "hPa" and typeOfSecondFixedSurface == 255:
                return 'isobaricInhPa'

            if typeOfFirstFixedSurface == 100 and typeOfSecondFixedSurface == 100:
                return 'isobaricLayer'

            if typeOfFirstFixedSurface == 101 and typeOfSecondFixedSurface == 255:
                return 'meanSea'

            if typeOfFirstFixedSurface == 102 and typeOfSecondFixedSurface == 255:
                return 'heightAboveSea'

            if typeOfFirstFixedSurface == 102 and typeOfSecondFixedSurface == 102:
                return 'heightAboveSeaLayer'

            if typeOfFirstFixedSurface == 103 and typeOfSecondFixedSurface == 255:
                return 'heightAboveGround'

            if typeOfFirstFixedSurface == 103 and typeOfSecondFixedSurface == 103:
                return 'heightAboveGroundLayer'

            if typeOfFirstFixedSurface == 104 and typeOfSecondFixedSurface == 255:
                return 'sigma'

            if typeOfFirstFixedSurface == 104 and typeOfSecondFixedSurface == 104:
                return 'sigmaLayer'

            if typeOfFirstFixedSurface == 105 and typeOfSecondFixedSurface == 255:
                return 'hybrid'

            if typeOfFirstFixedSurface == 118 and typeOfSecondFixedSurface == 255:
                return 'hybridHeight'

            if typeOfFirstFixedSurface == 105 and typeOfSecondFixedSurface == 105:
                return 'hybridLayer'

            if typeOfFirstFixedSurface == 106 and typeOfSecondFixedSurface == 255:
                return 'depthBelowLand'

            if typeOfFirstFixedSurface == 106 and typeOfSecondFixedSurface == 106:
                return 'depthBelowLandLayer'

            if typeOfFirstFixedSurface == 107 and typeOfSecondFixedSurface == 255:
                return 'theta'

            if typeOfFirstFixedSurface == 107 and typeOfSecondFixedSurface == 107:
                return 'thetaLayer'

            if typeOfFirstFixedSurface == 108 and typeOfSecondFixedSurface == 255:
                return 'pressureFromGround'

            if typeOfFirstFixedSurface == 108 and typeOfSecondFixedSurface == 108:
                return 'pressureFromGroundLayer'

            if typeOfFirstFixedSurface == 109 and typeOfSecondFixedSurface == 255:
                return 'potentialVorticity'

            if typeOfFirstFixedSurface == 111 and typeOfSecondFixedSurface == 255:
                return 'eta'

            if typeOfFirstFixedSurface == 151 and typeOfSecondFixedSurface == 255:
                return 'soil'

            if typeOfFirstFixedSurface == 151 and typeOfSecondFixedSurface == 151:
                return 'soilLayer'

            genVertHeightCoords = h.get_l('genVertHeightCoords')
            NV = h.get_l('NV')

            if genVertHeightCoords == 1 and typeOfFirstFixedSurface == 150 and NV == 6:
                return 'generalVertical'

            if genVertHeightCoords == 1 and typeOfFirstFixedSurface == 150 and typeOfSecondFixedSurface == 150 and NV == 6:
                return 'generalVerticalLayer'

            if typeOfFirstFixedSurface == 160 and typeOfSecondFixedSurface == 255:
                return 'depthBelowSea'

            if typeOfFirstFixedSurface == 1 and typeOfSecondFixedSurface == 8:
                return 'entireAtmosphere'

            if typeOfFirstFixedSurface == 1 and typeOfSecondFixedSurface == 9:
                return 'entireOcean'

            if typeOfFirstFixedSurface == 114 and typeOfSecondFixedSurface == 255:
                return 'snow'

            if typeOfFirstFixedSurface == 114 and typeOfSecondFixedSurface == 114:
                return 'snowLayer'

            scaleFactorOfFirstFixedSurface = h.get_l(
                'scaleFactorOfFirstFixedSurface')
            scaledValueOfFirstFixedSurface = h.get_l(
                'scaledValueOfFirstFixedSurface')

            if typeOfFirstFixedSurface == 160 and scaleFactorOfFirstFixedSurface == 0 and scaledValueOfFirstFixedSurface == 0 and typeOfSecondFixedSurface == 255:
                return 'oceanSurface'

            if typeOfFirstFixedSurface == 160 and typeOfSecondFixedSurface == 160:
                return 'oceanLayer'

            if typeOfFirstFixedSurface == 169 and typeOfSecondFixedSurface == 255:
                return 'mixedLayerDepth'

        return wrapped

    h.add(
        _.Concept('typeOfLevel',
                  'unknown',
                  concepts=typeOfLevel_inline_concept(h)))

    h.alias('vertical.typeOfLevel', 'typeOfLevel')
    h.alias('levelType', 'typeOfFirstFixedSurface')

    if (h.get_l('typeOfSecondFixedSurface') == 255):
        h.add(
            _.G2level('level', _.Get('typeOfFirstFixedSurface'),
                      _.Get('scaleFactorOfFirstFixedSurface'),
                      _.Get('scaledValueOfFirstFixedSurface'),
                      _.Get('pressureUnits')))
        h.add(_.Transient('bottomLevel', _.Get('level')))
        h.add(_.Transient('topLevel', _.Get('level')))
    else:
        h.add(
            _.G2level('topLevel', _.Get('typeOfFirstFixedSurface'),
                      _.Get('scaleFactorOfFirstFixedSurface'),
                      _.Get('scaledValueOfFirstFixedSurface'),
                      _.Get('pressureUnits')))
        h.add(
            _.G2level('bottomLevel', _.Get('typeOfSecondFixedSurface'),
                      _.Get('scaleFactorOfSecondFixedSurface'),
                      _.Get('scaledValueOfSecondFixedSurface'),
                      _.Get('pressureUnits')))
        h.alias('level', 'topLevel')

    h.alias('ls.level', 'level')
    h.alias('vertical.level', 'level')
    h.alias('vertical.bottomLevel', 'bottomLevel')
    h.alias('vertical.topLevel', 'topLevel')
    h.alias('extraDim', 'zero')

    if h._defined('extraDimensionPresent'):

        if h.get_l('extraDimensionPresent'):
            h.alias('extraDim', 'one')

    if h.get_l('extraDim'):
        h.alias('mars.levelist', 'dimension')
        h.alias('mars.levtype', 'dimensionType')
    else:
        h.add(_.Transient('tempPressureUnits', _.Get('pressureUnits')))

        if not ((h.get_s('typeOfLevel') == "surface")):

            if (h.get_s('tempPressureUnits') == "Pa"):
                h.add(
                    _.Scale('marsLevel', _.Get('level'), _.Get('one'),
                            _.Get('hundred')))
                h.alias('mars.levelist', 'marsLevel')
            else:
                h.alias('mars.levelist', 'level')

        h.alias('mars.levtype', 'typeOfFirstFixedSurface')

        if (h.get_s('levtype') == "sfc"):
            h.unalias('mars.levelist')

    if ((h.get_l('typeOfFirstFixedSurface') == 151)
            and (h.get_l('typeOfSecondFixedSurface') == 151)):
        h.alias('mars.levelist', 'bottomLevel')

    h.alias('ls.typeOfLevel', 'typeOfLevel')
    h.add(_.Unsigned('yearOfEndOfOverallTimeInterval', 2))
    h.add(_.Unsigned('monthOfEndOfOverallTimeInterval', 1))
    h.add(_.Unsigned('dayOfEndOfOverallTimeInterval', 1))
    h.add(_.Unsigned('hourOfEndOfOverallTimeInterval', 1))
    h.add(_.Unsigned('minuteOfEndOfOverallTimeInterval', 1))
    h.add(_.Unsigned('secondOfEndOfOverallTimeInterval', 1))
    h.add(_.Unsigned('numberOfTimeRange', 1))
    h.alias('n', 'numberOfTimeRange')
    h.add(_.Unsigned('numberOfMissingInStatisticalProcess', 4))
    h.alias('totalNumberOfDataValuesMissingInStatisticalProcess',
            'numberOfMissingInStatisticalProcess')

    with h.list('statisticalProcessesList'):
        for i in range(0, h.get_l('numberOfTimeRange')):
            h.add(
                _.Codetable('typeOfStatisticalProcessing', 1, "4.10.table",
                            _.Get('masterDir'), _.Get('localDir')))
            h.add(
                _.Codetable('typeOfTimeIncrement', 1, "4.11.table",
                            _.Get('masterDir'), _.Get('localDir')))
            h.alias(
                'typeOfTimeIncrementBetweenSuccessiveFieldsUsedInTheStatisticalProcessing',
                'typeOfTimeIncrement')
            h.add(
                _.Codetable('indicatorOfUnitForTimeRange', 1, "4.4.table",
                            _.Get('masterDir'), _.Get('localDir')))
            h.add(_.Unsigned('lengthOfTimeRange', 4))
            h.add(
                _.Codetable('indicatorOfUnitForTimeIncrement', 1, "4.4.table",
                            _.Get('masterDir'), _.Get('localDir')))
            h.add(_.Unsigned('timeIncrement', 4))
            h.alias('timeIncrementBetweenSuccessiveFields', 'timeIncrement')

    if ((h.get_l('numberOfTimeRange') == 1)
            or (h.get_l('numberOfTimeRange') == 2)):

        def stepTypeInternal_inline_concept(h):
            def wrapped(h):

                typeOfStatisticalProcessing = h.get_l(
                    'typeOfStatisticalProcessing')

                if typeOfStatisticalProcessing == 255:
                    return 'instant'

                typeOfTimeIncrement = h.get_l('typeOfTimeIncrement')

                if typeOfStatisticalProcessing == 0 and typeOfTimeIncrement == 2:
                    return 'avg'

                if typeOfStatisticalProcessing == 0 and typeOfTimeIncrement == 3:
                    return 'avg'

                if typeOfStatisticalProcessing == 0 and typeOfTimeIncrement == 1:
                    return 'avgd'

                if typeOfStatisticalProcessing == 1 and typeOfTimeIncrement == 2:
                    return 'accum'

                if typeOfStatisticalProcessing == 2:
                    return 'max'

                if typeOfStatisticalProcessing == 3:
                    return 'min'

                if typeOfStatisticalProcessing == 4:
                    return 'diff'

                if typeOfStatisticalProcessing == 5:
                    return 'rms'

                if typeOfStatisticalProcessing == 6:
                    return 'sd'

                if typeOfStatisticalProcessing == 7:
                    return 'cov'

                if typeOfStatisticalProcessing == 8:
                    return 'sdiff'

                if typeOfStatisticalProcessing == 9:
                    return 'ratio'

                if typeOfStatisticalProcessing == 10:
                    return 'stdanom'

                if typeOfStatisticalProcessing == 11:
                    return 'sum'

            return wrapped

        h.add(
            _.Concept('stepTypeInternal',
                      None,
                      concepts=stepTypeInternal_inline_concept(h)))

        h.add(
            _.Step_in_units('startStep', _.Get('forecastTime'),
                            _.Get('indicatorOfUnitOfTimeRange'),
                            _.Get('stepUnits'),
                            _.Get('indicatorOfUnitForTimeRange'),
                            _.Get('lengthOfTimeRange')))
        h.add(
            _.G2end_step('endStep', _.Get('startStep'), _.Get('stepUnits'),
                         _.Get('year'), _.Get('month'), _.Get('day'),
                         _.Get('hour'), _.Get('minute'), _.Get('second'),
                         _.Get('yearOfEndOfOverallTimeInterval'),
                         _.Get('monthOfEndOfOverallTimeInterval'),
                         _.Get('dayOfEndOfOverallTimeInterval'),
                         _.Get('hourOfEndOfOverallTimeInterval'),
                         _.Get('minuteOfEndOfOverallTimeInterval'),
                         _.Get('secondOfEndOfOverallTimeInterval'),
                         _.Get('indicatorOfUnitForTimeRange'),
                         _.Get('lengthOfTimeRange'),
                         _.Get('typeOfTimeIncrement'),
                         _.Get('numberOfTimeRange')))
        h.add(_.G2step_range('stepRange', _.Get('startStep'),
                             _.Get('endStep')))
    else:
        h.add(_.Constant('stepType', "multiple steps"))
        h.add(_.Constant('stepTypeInternal', "multiple steps"))
        h.add(_.Constant('endStep', "unavailable"))
        h.add(_.Constant('startStep', "unavailable"))
        h.add(_.Constant('stepRange', "unavailable"))

    h.alias('ls.stepRange', 'stepRange')
    h.alias('mars.step', 'endStep')
    h.alias('time.stepType', 'stepType')
    h.alias('time.stepRange', 'stepRange')
    h.alias('time.stepUnits', 'stepUnits')
    h.alias('time.dataDate', 'dataDate')
    h.alias('time.dataTime', 'dataTime')
    h.alias('time.startStep', 'startStep')
    h.alias('time.endStep', 'endStep')
    h.add(
        _.Validity_date('validityDate', _.Get('date'), _.Get('dataTime'),
                        _.Get('step'), _.Get('stepUnits'),
                        _.Get('yearOfEndOfOverallTimeInterval'),
                        _.Get('monthOfEndOfOverallTimeInterval'),
                        _.Get('dayOfEndOfOverallTimeInterval')))
    h.alias('time.validityDate', 'validityDate')
    h.add(
        _.Validity_time('validityTime', _.Get('date'), _.Get('dataTime'),
                        _.Get('step'), _.Get('stepUnits'),
                        _.Get('hourOfEndOfOverallTimeInterval'),
                        _.Get('minuteOfEndOfOverallTimeInterval')))
    h.alias('time.validityTime', 'validityTime')
Esempio n. 3
0
def load(h):

    h.add(_.Constant('dataRepresentationType', 90))
    h.add(_.Codetable('parameterCategory', 1, "4.1.[discipline:l].table", _.Get('masterDir'), _.Get('localDir')))
    h.add(_.Codetable('parameterNumber', 1, "4.2.[discipline:l].[parameterCategory:l].table", _.Get('masterDir'), _.Get('localDir')))
    h.add(_.Codetable_units('parameterUnits', _.Get('parameterNumber')))
    h.add(_.Codetable_title('parameterName', _.Get('parameterNumber')))
    h.add(_.Codetable('typeOfGeneratingProcess', 1, "4.3.table", _.Get('masterDir'), _.Get('localDir')))
    h.add(_.Unsigned('backgroundProcess', 1))
    h.alias('backgroundGeneratingProcessIdentifier', 'backgroundProcess')
    h.add(_.Unsigned('generatingProcessIdentifier', 1))
    h.add(_.Unsigned('hoursAfterDataCutoff', 2))
    h.alias('hoursAfterReferenceTimeOfDataCutoff', 'hoursAfterDataCutoff')
    h.add(_.Unsigned('minutesAfterDataCutoff', 1))
    h.alias('minutesAfterReferenceTimeOfDataCutoff', 'minutesAfterDataCutoff')
    h.add(_.Codetable('indicatorOfUnitOfTimeRange', 1, "4.4.table", _.Get('masterDir'), _.Get('localDir')))
    h.alias('defaultStepUnits', 'one')
    _.Template('grib2/localConcepts/[centre:s]/default_step_units.def', True).load(h)
    h.add(_.TransientCodetable('stepUnits', 1, "stepUnits.table"))
    h.add(_.Signed('forecastTime', 4))
    h.add(_.Step_in_units('startStep', _.Get('forecastTime'), _.Get('indicatorOfUnitOfTimeRange'), _.Get('stepUnits')))
    h.add(_.G2end_step('endStep', _.Get('startStep'), _.Get('stepUnits')))
    h.alias('step', 'startStep')
    h.alias('marsStep', 'startStep')
    h.alias('mars.step', 'startStep')
    h.alias('marsStartStep', 'startStep')
    h.alias('marsEndStep', 'endStep')
    h.add(_.G2step_range('stepRange', _.Get('startStep')))
    h.alias('ls.stepRange', 'stepRange')

    def stepTypeInternal_inline_concept(h):
        def wrapped(h):

            dummy = h.get_l('dummy')

            if dummy == 1:
                return 'instant'

        return wrapped

    h.add(_.Concept('stepTypeInternal', None, concepts=stepTypeInternal_inline_concept(h)))

    h.alias('time.stepType', 'stepType')
    h.alias('time.stepRange', 'stepRange')
    h.alias('time.stepUnits', 'stepUnits')
    h.alias('time.dataDate', 'dataDate')
    h.alias('time.dataTime', 'dataTime')
    h.alias('time.startStep', 'startStep')
    h.alias('time.endStep', 'endStep')
    h.add(_.Validity_date('validityDate', _.Get('dataDate'), _.Get('dataTime'), _.Get('step'), _.Get('stepUnits')))
    h.alias('time.validityDate', 'validityDate')
    h.add(_.Validity_time('validityTime', _.Get('dataDate'), _.Get('dataTime'), _.Get('step'), _.Get('stepUnits')))
    h.alias('time.validityTime', 'validityTime')
    h.add(_.Constant('typeOfLevel', "surface"))
    h.add(_.Constant('levelType', "surface"))
    h.add(_.Constant('level', 0))
    h.add(_.Unsigned('NB', 1))
    h.alias('numberOfContributingSpectralBands', 'NB')

    with h.list('listOfContributingSpectralBands'):
        for i in range(0, h.get_l('numberOfContributingSpectralBands')):
            h.add(_.Unsigned('satelliteSeries', 2))
            h.add(_.Unsigned('satelliteNumber', 2))
            h.add(_.Unsigned('instrumentType', 2))
            h.add(_.Unsigned('scaleFactorOfCentralWaveNumber', 1))
            h.add(_.Unsigned('scaledValueOfCentralWaveNumber', 4))
Esempio n. 4
0
def load(h):

    h.add(
        _.Codetable('shapeOfTheEarth', 1, "3.2.table", _.Get('masterDir'),
                    _.Get('localDir')))
    h.add(_.Unsigned('scaleFactorOfRadiusOfSphericalEarth', 1))
    h.add(_.Unsigned('scaledValueOfRadiusOfSphericalEarth', 4))
    h.add(_.Unsigned('scaleFactorOfEarthMajorAxis', 1))
    h.alias('scaleFactorOfMajorAxisOfOblateSpheroidEarth',
            'scaleFactorOfEarthMajorAxis')
    h.add(_.Unsigned('scaledValueOfEarthMajorAxis', 4))
    h.alias('scaledValueOfMajorAxisOfOblateSpheroidEarth',
            'scaledValueOfEarthMajorAxis')
    h.add(_.Unsigned('scaleFactorOfEarthMinorAxis', 1))
    h.alias('scaleFactorOfMinorAxisOfOblateSpheroidEarth',
            'scaleFactorOfEarthMinorAxis')
    h.add(_.Unsigned('scaledValueOfEarthMinorAxis', 4))
    h.alias('scaledValueOfMinorAxisOfOblateSpheroidEarth',
            'scaledValueOfEarthMinorAxis')
    h.alias('earthIsOblate', 'one')

    if (h.get_l('shapeOfTheEarth') == 0):
        h.add(_.Transient('radius', 6367470))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 1):
        h.add(
            _.From_scale_factor_scaled_value(
                'radius', _.Get('scaleFactorOfRadiusOfSphericalEarth'),
                _.Get('scaledValueOfRadiusOfSphericalEarth')))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 6):
        h.add(_.Transient('radius', 6371229))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 8):
        h.add(_.Transient('radius', 6371200))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 2):
        h.add(_.Transient('earthMajorAxis', 6.37816e+06))
        h.add(_.Transient('earthMinorAxis', 6.35678e+06))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    if (h.get_l('shapeOfTheEarth') == 3):
        h.add(
            _.From_scale_factor_scaled_value(
                'earthMajorAxis', _.Get('scaleFactorOfEarthMajorAxis'),
                _.Get('scaledValueOfEarthMajorAxis')))
        h.add(
            _.From_scale_factor_scaled_value(
                'earthMinorAxis', _.Get('scaleFactorOfEarthMinorAxis'),
                _.Get('scaledValueOfEarthMinorAxis')))
        h.add(
            _.Divdouble('earthMajorAxisInMetres', _.Get('earthMajorAxis'),
                        0.001))
        h.add(
            _.Divdouble('earthMinorAxisInMetres', _.Get('earthMinorAxis'),
                        0.001))

    if (h.get_l('shapeOfTheEarth') == 7):
        h.add(
            _.From_scale_factor_scaled_value(
                'earthMajorAxis', _.Get('scaleFactorOfEarthMajorAxis'),
                _.Get('scaledValueOfEarthMajorAxis')))
        h.add(
            _.From_scale_factor_scaled_value(
                'earthMinorAxis', _.Get('scaleFactorOfEarthMinorAxis'),
                _.Get('scaledValueOfEarthMinorAxis')))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    if ((h.get_l('shapeOfTheEarth') == 4)
            or (h.get_l('shapeOfTheEarth') == 5)):
        h.add(_.Transient('earthMajorAxis', 6.37814e+06))
        h.add(_.Transient('earthMinorAxis', 6.35675e+06))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    if (h.get_l('shapeOfTheEarth') == 9):
        h.add(_.Transient('earthMajorAxis', 6.37756e+06))
        h.add(_.Transient('earthMinorAxis', 6.35626e+06))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    h.add(_.Unsigned('numberOfHorizontalPoints', 5))
    h.add(_.Unsigned('basicAngleOfTheInitialProductionDomain', 4))
    h.add(_.Unsigned('subdivisionsOfBasicAngle', 4))
    h.add(_.Signed('latitudeOfFirstGridPoint', 4))
    h.alias('La1', 'latitudeOfFirstGridPoint')
    h.add(_.Unsigned('longitudeOfFirstGridPoint', 4))
    h.alias('Lo1', 'longitudeOfFirstGridPoint')
    h.add(
        _.Codeflag('scanningMode', 1,
                   "grib2/tables/[tablesVersion]/3.4.table"))
    h.add(_.Bit('iScansNegatively', _.Get('scanningMode'), 7))
    h.add(_.Bit('jScansPositively', _.Get('scanningMode'), 6))
    h.add(_.Bit('jPointsAreConsecutive', _.Get('scanningMode'), 5))
    h.add(_.Bit('alternativeRowScanning', _.Get('scanningMode'), 4))

    if h.get_l('jPointsAreConsecutive'):
        h.alias('numberOfRows', 'Ni')
        h.alias('numberOfColumns', 'Nj')
    else:
        h.alias('numberOfRows', 'Nj')
        h.alias('numberOfColumns', 'Ni')

    h.alias('geography.iScansNegatively', 'iScansNegatively')
    h.alias('geography.jScansPositively', 'jScansPositively')
    h.alias('geography.jPointsAreConsecutive', 'jPointsAreConsecutive')
    h.add(_.Transient('iScansPositively', _.Not(_.Get('iScansNegatively'))))
    h.add(_.Bit('scanningMode5', _.Get('scanningMode'), 3))
    h.add(_.Bit('scanningMode6', _.Get('scanningMode'), 2))
    h.add(_.Bit('scanningMode7', _.Get('scanningMode'), 1))
    h.add(_.Bit('scanningMode8', _.Get('scanningMode'), 0))
    h.add(
        _.Change_scanning_direction('swapScanningX', _.Get('values'),
                                    _.Get('Ni'), _.Get('Nj'),
                                    _.Get('iScansNegatively'),
                                    _.Get('jScansPositively'), _.Get('xFirst'),
                                    _.Get('xLast'), _.Get('x')))
    h.alias('swapScanningLon', 'swapScanningX')
    h.add(
        _.Change_scanning_direction('swapScanningY', _.Get('values'),
                                    _.Get('Ni'), _.Get('Nj'),
                                    _.Get('iScansNegatively'),
                                    _.Get('jScansPositively'), _.Get('yFirst'),
                                    _.Get('yLast'), _.Get('y')))
    h.alias('swapScanningLat', 'swapScanningY')
    h.add(_.Signed('latitudeOfLastGridPoint', 4))
    h.alias('La2', 'latitudeOfLastGridPoint')
    h.add(_.Unsigned('longitudeOfLastGridPoint', 4))
    h.alias('Lo2', 'longitudeOfLastGridPoint')
    h.add(
        _.Codetable('typeOfHorizontalLine', 1, "3.20.table",
                    _.Get('masterDir'), _.Get('localDir')))
    h.add(_.Unsigned('numberOfTimeSteps', 4))
    h.alias('NT', 'numberOfTimeSteps')
    h.add(
        _.Codetable('unitOfOffsetFromReferenceTime', 1, "4.4.table",
                    _.Get('masterDir'), _.Get('localDir')))
    h.add(_.Unsigned('offsetFromReferenceOfFirstTime', 4))
    h.add(
        _.Codetable('typeOfTimeIncrement', 1, "4.11.table", _.Get('masterDir'),
                    _.Get('localDir')))
    h.add(
        _.Codetable('unitOfTimeIncrement', 1, "4.4.table", _.Get('masterDir'),
                    _.Get('localDir')))
    h.add(_.Unsigned('timeIncrement', 4))
    h.add(_.Unsigned('year', 2))
    h.add(_.Unsigned('month', 1))
    h.add(_.Unsigned('day', 1))
    h.add(_.Unsigned('hour', 1))
    h.add(_.Unsigned('minute', 1))
    h.add(_.Unsigned('second', 1))
Esempio n. 5
0
def load(h):

    h.add(
        _.Codetable('parameterCategory', 1, "4.1.[discipline:l].table",
                    _.Get('masterDir'), _.Get('localDir')))
    h.add(
        _.Codetable('parameterNumber', 1,
                    "4.2.[discipline:l].[parameterCategory:l].table",
                    _.Get('masterDir'), _.Get('localDir')))
    h.add(_.Codetable_units('parameterUnits', _.Get('parameterNumber')))
    h.add(_.Codetable_title('parameterName', _.Get('parameterNumber')))
    h.add(
        _.Codetable('aerosolType', 2, "4.233.table", _.Get('masterDir'),
                    _.Get('localDir')))
    h.add(
        _.Codetable('typeOfSizeInterval', 1, "4.91.table", _.Get('masterDir'),
                    _.Get('localDir')))
    h.alias('typeOfIntervalForFirstAndSecondSize', 'typeOfSizeInterval')
    h.add(_.Signed('scaleFactorOfFirstSize', 1))
    h.add(_.Signed('scaledValueOfFirstSize', 4))
    h.add(_.Signed('scaleFactorOfSecondSize', 1))
    h.add(_.Signed('scaledValueOfSecondSize', 4))
    h.add(
        _.Codetable('typeOfGeneratingProcess', 1, "4.3.table",
                    _.Get('masterDir'), _.Get('localDir')))
    h.add(_.Unsigned('backgroundProcess', 1))
    h.alias('backgroundGeneratingProcessIdentifier', 'backgroundProcess')
    h.add(_.Unsigned('generatingProcessIdentifier', 1))
    h.add(_.Unsigned('hoursAfterDataCutoff', 2))
    h.alias('hoursAfterReferenceTimeOfDataCutoff', 'hoursAfterDataCutoff')
    h.add(_.Unsigned('minutesAfterDataCutoff', 1))
    h.alias('minutesAfterReferenceTimeOfDataCutoff', 'minutesAfterDataCutoff')
    h.add(
        _.Codetable('indicatorOfUnitOfTimeRange', 1, "4.4.table",
                    _.Get('masterDir'), _.Get('localDir')))
    h.alias('defaultStepUnits', 'one')
    _.Template('grib2/localConcepts/[centre:s]/default_step_units.def',
               True).load(h)
    h.add(_.TransientCodetable('stepUnits', 1, "stepUnits.table"))

    if (h._new() or ((h.get_l('section4Length') - (4 * h.get_l('NV'))) == 45)):
        h.add(_.Unsigned('forecastTime', 2))
    else:
        h.add(_.Signed('forecastTime', 4))

    h.add(
        _.Step_in_units('startStep', _.Get('forecastTime'),
                        _.Get('indicatorOfUnitOfTimeRange'),
                        _.Get('stepUnits')))
    h.add(_.G2end_step('endStep', _.Get('startStep'), _.Get('stepUnits')))
    h.alias('step', 'startStep')
    h.alias('marsStep', 'startStep')
    h.alias('mars.step', 'startStep')
    h.alias('marsStartStep', 'startStep')
    h.alias('marsEndStep', 'endStep')
    h.add(_.G2step_range('stepRange', _.Get('startStep')))
    h.alias('ls.stepRange', 'stepRange')

    def stepTypeInternal_inline_concept(h):
        def wrapped(h):

            dummy = h.get_l('dummy')

            if dummy == 1:
                return 'instant'

        return wrapped

    h.add(
        _.Concept('stepTypeInternal',
                  None,
                  concepts=stepTypeInternal_inline_concept(h)))

    h.alias('time.stepType', 'stepType')
    h.alias('time.stepRange', 'stepRange')
    h.alias('time.stepUnits', 'stepUnits')
    h.alias('time.dataDate', 'dataDate')
    h.alias('time.dataTime', 'dataTime')
    h.alias('time.startStep', 'startStep')
    h.alias('time.endStep', 'endStep')
    h.add(
        _.Validity_date('validityDate', _.Get('dataDate'), _.Get('dataTime'),
                        _.Get('step'), _.Get('stepUnits')))
    h.alias('time.validityDate', 'validityDate')
    h.add(
        _.Validity_time('validityTime', _.Get('dataDate'), _.Get('dataTime'),
                        _.Get('step'), _.Get('stepUnits')))
    h.alias('time.validityTime', 'validityTime')
    h.add(
        _.StringCodetable('typeOfFirstFixedSurface', 1, "4.5.table",
                          _.Get('masterDir'), _.Get('localDir')))
    h.add(
        _.Codetable_units('unitsOfFirstFixedSurface',
                          _.Get('typeOfFirstFixedSurface')))
    h.add(
        _.Codetable_title('nameOfFirstFixedSurface',
                          _.Get('typeOfFirstFixedSurface')))
    h.add(_.Signed('scaleFactorOfFirstFixedSurface', 1))
    h.add(_.Unsigned('scaledValueOfFirstFixedSurface', 4))
    h.add(
        _.Codetable('typeOfSecondFixedSurface', 1, "4.5.table",
                    _.Get('masterDir'), _.Get('localDir')))
    h.add(
        _.Codetable_units('unitsOfSecondFixedSurface',
                          _.Get('typeOfSecondFixedSurface')))
    h.add(
        _.Codetable_title('nameOfSecondFixedSurface',
                          _.Get('typeOfSecondFixedSurface')))
    h.add(_.Signed('scaleFactorOfSecondFixedSurface', 1))
    h.add(_.Unsigned('scaledValueOfSecondFixedSurface', 4))
    h.add(_.Transient('pressureUnits', "hPa"))

    def typeOfLevel_inline_concept(h):
        def wrapped(h):

            typeOfFirstFixedSurface = h.get_l('typeOfFirstFixedSurface')
            typeOfSecondFixedSurface = h.get_l('typeOfSecondFixedSurface')

            if typeOfFirstFixedSurface == 1 and typeOfSecondFixedSurface == 255:
                return 'surface'

            if typeOfFirstFixedSurface == 2 and typeOfSecondFixedSurface == 255:
                return 'cloudBase'

            if typeOfFirstFixedSurface == 3 and typeOfSecondFixedSurface == 255:
                return 'cloudTop'

            if typeOfFirstFixedSurface == 4 and typeOfSecondFixedSurface == 255:
                return 'isothermZero'

            if typeOfFirstFixedSurface == 5 and typeOfSecondFixedSurface == 255:
                return 'adiabaticCondensation'

            if typeOfFirstFixedSurface == 6 and typeOfSecondFixedSurface == 255:
                return 'maxWind'

            if typeOfFirstFixedSurface == 7 and typeOfSecondFixedSurface == 255:
                return 'tropopause'

            if typeOfFirstFixedSurface == 8 and typeOfSecondFixedSurface == 255:
                return 'nominalTop'

            if typeOfFirstFixedSurface == 9 and typeOfSecondFixedSurface == 255:
                return 'seaBottom'

            if typeOfFirstFixedSurface == 10 and typeOfSecondFixedSurface == 255:
                return 'atmosphere'

            if typeOfFirstFixedSurface == 20 and typeOfSecondFixedSurface == 255:
                return 'isothermal'

            pressureUnits = h.get_s('pressureUnits')

            if typeOfFirstFixedSurface == 100 and typeOfSecondFixedSurface == 255 and pressureUnits == "Pa":
                return 'isobaricInPa'

            if typeOfFirstFixedSurface == 100 and pressureUnits == "hPa" and typeOfSecondFixedSurface == 255:
                return 'isobaricInhPa'

            if typeOfFirstFixedSurface == 100 and typeOfSecondFixedSurface == 100:
                return 'isobaricLayer'

            if typeOfFirstFixedSurface == 101 and typeOfSecondFixedSurface == 255:
                return 'meanSea'

            if typeOfFirstFixedSurface == 102 and typeOfSecondFixedSurface == 255:
                return 'heightAboveSea'

            if typeOfFirstFixedSurface == 102 and typeOfSecondFixedSurface == 102:
                return 'heightAboveSeaLayer'

            if typeOfFirstFixedSurface == 103 and typeOfSecondFixedSurface == 255:
                return 'heightAboveGround'

            if typeOfFirstFixedSurface == 103 and typeOfSecondFixedSurface == 103:
                return 'heightAboveGroundLayer'

            if typeOfFirstFixedSurface == 104 and typeOfSecondFixedSurface == 255:
                return 'sigma'

            if typeOfFirstFixedSurface == 104 and typeOfSecondFixedSurface == 104:
                return 'sigmaLayer'

            if typeOfFirstFixedSurface == 105 and typeOfSecondFixedSurface == 255:
                return 'hybrid'

            if typeOfFirstFixedSurface == 118 and typeOfSecondFixedSurface == 255:
                return 'hybridHeight'

            if typeOfFirstFixedSurface == 105 and typeOfSecondFixedSurface == 105:
                return 'hybridLayer'

            if typeOfFirstFixedSurface == 106 and typeOfSecondFixedSurface == 255:
                return 'depthBelowLand'

            if typeOfFirstFixedSurface == 106 and typeOfSecondFixedSurface == 106:
                return 'depthBelowLandLayer'

            if typeOfFirstFixedSurface == 107 and typeOfSecondFixedSurface == 255:
                return 'theta'

            if typeOfFirstFixedSurface == 107 and typeOfSecondFixedSurface == 107:
                return 'thetaLayer'

            if typeOfFirstFixedSurface == 108 and typeOfSecondFixedSurface == 255:
                return 'pressureFromGround'

            if typeOfFirstFixedSurface == 108 and typeOfSecondFixedSurface == 108:
                return 'pressureFromGroundLayer'

            if typeOfFirstFixedSurface == 109 and typeOfSecondFixedSurface == 255:
                return 'potentialVorticity'

            if typeOfFirstFixedSurface == 111 and typeOfSecondFixedSurface == 255:
                return 'eta'

            if typeOfFirstFixedSurface == 151 and typeOfSecondFixedSurface == 255:
                return 'soil'

            if typeOfFirstFixedSurface == 151 and typeOfSecondFixedSurface == 151:
                return 'soilLayer'

            genVertHeightCoords = h.get_l('genVertHeightCoords')
            NV = h.get_l('NV')

            if genVertHeightCoords == 1 and typeOfFirstFixedSurface == 150 and NV == 6:
                return 'generalVertical'

            if genVertHeightCoords == 1 and typeOfFirstFixedSurface == 150 and typeOfSecondFixedSurface == 150 and NV == 6:
                return 'generalVerticalLayer'

            if typeOfFirstFixedSurface == 160 and typeOfSecondFixedSurface == 255:
                return 'depthBelowSea'

            if typeOfFirstFixedSurface == 1 and typeOfSecondFixedSurface == 8:
                return 'entireAtmosphere'

            if typeOfFirstFixedSurface == 1 and typeOfSecondFixedSurface == 9:
                return 'entireOcean'

            if typeOfFirstFixedSurface == 114 and typeOfSecondFixedSurface == 255:
                return 'snow'

            if typeOfFirstFixedSurface == 114 and typeOfSecondFixedSurface == 114:
                return 'snowLayer'

            scaleFactorOfFirstFixedSurface = h.get_l(
                'scaleFactorOfFirstFixedSurface')
            scaledValueOfFirstFixedSurface = h.get_l(
                'scaledValueOfFirstFixedSurface')

            if typeOfFirstFixedSurface == 160 and scaleFactorOfFirstFixedSurface == 0 and scaledValueOfFirstFixedSurface == 0 and typeOfSecondFixedSurface == 255:
                return 'oceanSurface'

            if typeOfFirstFixedSurface == 160 and typeOfSecondFixedSurface == 160:
                return 'oceanLayer'

            if typeOfFirstFixedSurface == 169 and typeOfSecondFixedSurface == 255:
                return 'mixedLayerDepth'

        return wrapped

    h.add(
        _.Concept('typeOfLevel',
                  'unknown',
                  concepts=typeOfLevel_inline_concept(h)))

    h.alias('vertical.typeOfLevel', 'typeOfLevel')
    h.alias('levelType', 'typeOfFirstFixedSurface')

    if (h.get_l('typeOfSecondFixedSurface') == 255):
        h.add(
            _.G2level('level', _.Get('typeOfFirstFixedSurface'),
                      _.Get('scaleFactorOfFirstFixedSurface'),
                      _.Get('scaledValueOfFirstFixedSurface'),
                      _.Get('pressureUnits')))
        h.add(_.Transient('bottomLevel', _.Get('level')))
        h.add(_.Transient('topLevel', _.Get('level')))
    else:
        h.add(
            _.G2level('topLevel', _.Get('typeOfFirstFixedSurface'),
                      _.Get('scaleFactorOfFirstFixedSurface'),
                      _.Get('scaledValueOfFirstFixedSurface'),
                      _.Get('pressureUnits')))
        h.add(
            _.G2level('bottomLevel', _.Get('typeOfSecondFixedSurface'),
                      _.Get('scaleFactorOfSecondFixedSurface'),
                      _.Get('scaledValueOfSecondFixedSurface'),
                      _.Get('pressureUnits')))
        h.alias('level', 'topLevel')

    h.alias('ls.level', 'level')
    h.alias('vertical.level', 'level')
    h.alias('vertical.bottomLevel', 'bottomLevel')
    h.alias('vertical.topLevel', 'topLevel')
    h.alias('extraDim', 'zero')

    if h._defined('extraDimensionPresent'):

        if h.get_l('extraDimensionPresent'):
            h.alias('extraDim', 'one')

    if h.get_l('extraDim'):
        h.alias('mars.levelist', 'dimension')
        h.alias('mars.levtype', 'dimensionType')
    else:
        h.add(_.Transient('tempPressureUnits', _.Get('pressureUnits')))

        if not ((h.get_s('typeOfLevel') == "surface")):

            if (h.get_s('tempPressureUnits') == "Pa"):
                h.add(
                    _.Scale('marsLevel', _.Get('level'), _.Get('one'),
                            _.Get('hundred')))
                h.alias('mars.levelist', 'marsLevel')
            else:
                h.alias('mars.levelist', 'level')

        h.alias('mars.levtype', 'typeOfFirstFixedSurface')

        if (h.get_s('levtype') == "sfc"):
            h.unalias('mars.levelist')

    if ((h.get_l('typeOfFirstFixedSurface') == 151)
            and (h.get_l('typeOfSecondFixedSurface') == 151)):
        h.alias('mars.levelist', 'bottomLevel')

    h.alias('ls.typeOfLevel', 'typeOfLevel')
Esempio n. 6
0
def load(h):

    h.add(
        _.Codetable('shapeOfTheEarth', 1, "3.2.table", _.Get('masterDir'),
                    _.Get('localDir')))
    h.add(_.Unsigned('scaleFactorOfRadiusOfSphericalEarth', 1))
    h.add(_.Unsigned('scaledValueOfRadiusOfSphericalEarth', 4))
    h.add(_.Unsigned('scaleFactorOfEarthMajorAxis', 1))
    h.alias('scaleFactorOfMajorAxisOfOblateSpheroidEarth',
            'scaleFactorOfEarthMajorAxis')
    h.add(_.Unsigned('scaledValueOfEarthMajorAxis', 4))
    h.alias('scaledValueOfMajorAxisOfOblateSpheroidEarth',
            'scaledValueOfEarthMajorAxis')
    h.add(_.Unsigned('scaleFactorOfEarthMinorAxis', 1))
    h.alias('scaleFactorOfMinorAxisOfOblateSpheroidEarth',
            'scaleFactorOfEarthMinorAxis')
    h.add(_.Unsigned('scaledValueOfEarthMinorAxis', 4))
    h.alias('scaledValueOfMinorAxisOfOblateSpheroidEarth',
            'scaledValueOfEarthMinorAxis')
    h.alias('earthIsOblate', 'one')

    if (h.get_l('shapeOfTheEarth') == 0):
        h.add(_.Transient('radius', 6367470))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 1):
        h.add(
            _.From_scale_factor_scaled_value(
                'radius', _.Get('scaleFactorOfRadiusOfSphericalEarth'),
                _.Get('scaledValueOfRadiusOfSphericalEarth')))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 6):
        h.add(_.Transient('radius', 6371229))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 8):
        h.add(_.Transient('radius', 6371200))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 2):
        h.add(_.Transient('earthMajorAxis', 6.37816e+06))
        h.add(_.Transient('earthMinorAxis', 6.35678e+06))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    if (h.get_l('shapeOfTheEarth') == 3):
        h.add(
            _.From_scale_factor_scaled_value(
                'earthMajorAxis', _.Get('scaleFactorOfEarthMajorAxis'),
                _.Get('scaledValueOfEarthMajorAxis')))
        h.add(
            _.From_scale_factor_scaled_value(
                'earthMinorAxis', _.Get('scaleFactorOfEarthMinorAxis'),
                _.Get('scaledValueOfEarthMinorAxis')))
        h.add(
            _.Divdouble('earthMajorAxisInMetres', _.Get('earthMajorAxis'),
                        0.001))
        h.add(
            _.Divdouble('earthMinorAxisInMetres', _.Get('earthMinorAxis'),
                        0.001))

    if (h.get_l('shapeOfTheEarth') == 7):
        h.add(
            _.From_scale_factor_scaled_value(
                'earthMajorAxis', _.Get('scaleFactorOfEarthMajorAxis'),
                _.Get('scaledValueOfEarthMajorAxis')))
        h.add(
            _.From_scale_factor_scaled_value(
                'earthMinorAxis', _.Get('scaleFactorOfEarthMinorAxis'),
                _.Get('scaledValueOfEarthMinorAxis')))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    if ((h.get_l('shapeOfTheEarth') == 4)
            or (h.get_l('shapeOfTheEarth') == 5)):
        h.add(_.Transient('earthMajorAxis', 6.37814e+06))
        h.add(_.Transient('earthMinorAxis', 6.35675e+06))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    if (h.get_l('shapeOfTheEarth') == 9):
        h.add(_.Transient('earthMajorAxis', 6.37756e+06))
        h.add(_.Transient('earthMinorAxis', 6.35626e+06))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    h.add(_.Unsigned('Ni', 4))
    h.alias('numberOfPointsAlongAParallel', 'Ni')
    h.alias('Nx', 'Ni')
    h.add(_.Unsigned('Nj', 4))
    h.alias('numberOfPointsAlongAMeridian', 'Nj')
    h.alias('Ny', 'Nj')
    h.alias('geography.Ni', 'Ni')
    h.alias('geography.Nj', 'Nj')
    h.add(_.Unsigned('basicAngleOfTheInitialProductionDomain', 4))
    h.add(
        _.Transient('mBasicAngle',
                    (_.Get('basicAngleOfTheInitialProductionDomain') *
                     _.Get('oneMillionConstant'))))
    h.add(_.Transient('angleMultiplier', 1))
    h.add(_.Transient('mAngleMultiplier', 1000000))
    pass  # when block
    h.add(_.Unsigned('subdivisionsOfBasicAngle', 4))
    h.add(_.Transient('angleDivisor', 1000000))
    pass  # when block
    h.add(
        _.Codeflag('resolutionAndComponentFlags', 1,
                   "grib2/tables/[tablesVersion]/3.3.table"))
    h.add(
        _.Bit('resolutionAndComponentFlags1',
              _.Get('resolutionAndComponentFlags'), 7))
    h.add(
        _.Bit('resolutionAndComponentFlags2',
              _.Get('resolutionAndComponentFlags'), 6))
    h.add(
        _.Bit('iDirectionIncrementGiven', _.Get('resolutionAndComponentFlags'),
              5))
    h.add(
        _.Bit('jDirectionIncrementGiven', _.Get('resolutionAndComponentFlags'),
              4))
    h.add(_.Bit('uvRelativeToGrid', _.Get('resolutionAndComponentFlags'), 3))
    h.add(
        _.Bit('resolutionAndComponentFlags6',
              _.Get('resolutionAndComponentFlags'), 7))
    h.add(
        _.Bit('resolutionAndComponentFlags7',
              _.Get('resolutionAndComponentFlags'), 6))
    h.add(
        _.Bit('resolutionAndComponentFlags8',
              _.Get('resolutionAndComponentFlags'), 6))

    def ijDirectionIncrementGiven_inline_concept(h):
        def wrapped(h):

            iDirectionIncrementGiven = h.get_l('iDirectionIncrementGiven')
            jDirectionIncrementGiven = h.get_l('jDirectionIncrementGiven')

            if iDirectionIncrementGiven == 1 and jDirectionIncrementGiven == 1:
                return 1

            if iDirectionIncrementGiven == 1 and jDirectionIncrementGiven == 0:
                return 0

            if iDirectionIncrementGiven == 0 and jDirectionIncrementGiven == 1:
                return 0

            if iDirectionIncrementGiven == 0 and jDirectionIncrementGiven == 0:
                return 0

        return wrapped

    h.add(
        _.Concept('ijDirectionIncrementGiven',
                  None,
                  concepts=ijDirectionIncrementGiven_inline_concept(h)))

    h.alias('DiGiven', 'iDirectionIncrementGiven')
    h.alias('DjGiven', 'jDirectionIncrementGiven')
    h.add(
        _.Codeflag('scanningMode', 1,
                   "grib2/tables/[tablesVersion]/3.4.table"))
    h.add(_.Bit('iScansNegatively', _.Get('scanningMode'), 7))
    h.add(_.Bit('jScansPositively', _.Get('scanningMode'), 6))
    h.add(_.Bit('jPointsAreConsecutive', _.Get('scanningMode'), 5))
    h.add(_.Bit('alternativeRowScanning', _.Get('scanningMode'), 4))

    if h.get_l('jPointsAreConsecutive'):
        h.alias('numberOfRows', 'Ni')
        h.alias('numberOfColumns', 'Nj')
    else:
        h.alias('numberOfRows', 'Nj')
        h.alias('numberOfColumns', 'Ni')

    h.alias('geography.iScansNegatively', 'iScansNegatively')
    h.alias('geography.jScansPositively', 'jScansPositively')
    h.alias('geography.jPointsAreConsecutive', 'jPointsAreConsecutive')
    h.add(_.Transient('iScansPositively', _.Not(_.Get('iScansNegatively'))))
    h.add(_.Bit('scanningMode5', _.Get('scanningMode'), 3))
    h.add(_.Bit('scanningMode6', _.Get('scanningMode'), 2))
    h.add(_.Bit('scanningMode7', _.Get('scanningMode'), 1))
    h.add(_.Bit('scanningMode8', _.Get('scanningMode'), 0))
    h.add(
        _.Change_scanning_direction('swapScanningX', _.Get('values'),
                                    _.Get('Ni'), _.Get('Nj'),
                                    _.Get('iScansNegatively'),
                                    _.Get('jScansPositively'), _.Get('xFirst'),
                                    _.Get('xLast'), _.Get('x')))
    h.alias('swapScanningLon', 'swapScanningX')
    h.add(
        _.Change_scanning_direction('swapScanningY', _.Get('values'),
                                    _.Get('Ni'), _.Get('Nj'),
                                    _.Get('iScansNegatively'),
                                    _.Get('jScansPositively'), _.Get('yFirst'),
                                    _.Get('yLast'), _.Get('y')))
    h.alias('swapScanningLat', 'swapScanningY')

    with h.list('longitudesList'):
        for i in range(0, h.get_l('Ni')):
            h.add(_.Unsigned('longitudes', 4))

    with h.list('latitudesList'):
        for i in range(0, h.get_l('Nj')):
            h.add(_.Signed('latitudes', 4))
Esempio n. 7
0
def load(h):

    h.add(_.Constant('ECMWF', 98))
    h.add(_.Constant('ECMWF_s', "ecmf"))
    h.add(_.Constant('WMO', 0))
    h.add(_.Constant('conceptsMasterDir', "grib1"))
    h.add(_.Constant('conceptsLocalDirECMF', "grib1/localConcepts/ecmf"))
    h.add(_.Constant('conceptsLocalDirAll', "grib1/localConcepts/[centre:s]"))
    h.add(_.Constant('tablesMasterDir', "grib1"))
    h.add(_.Constant('tablesLocalDir', "grib1/local/[centre:s]"))
    h.add(_.Transient('productionStatusOfProcessedData', 0))
    h.add(_.Position('offsetSection1'))
    h.add(_.Section_length('section1Length', 3))
    h.add(_.Section_pointer('section1Pointer', _.Get('offsetSection1'), _.Get('section1Length'), 1))
    h.add(_.Constant('wrongPadding', 0))
    h.add(_.Unsigned('table2Version', 1))
    h.alias('gribTablesVersionNo', 'table2Version')
    h.add(_.StringCodetable('centre', 1, "common/c-1.table"))
    h.alias('identificationOfOriginatingGeneratingCentre', 'centre')
    h.add(_.Codetable_title('centreDescription', _.Get('centre')))
    h.alias('parameter.centre', 'centre')
    h.alias('originatingCentre', 'centre')
    h.alias('ls.centre', 'centre')
    h.add(_.Unsigned('generatingProcessIdentifier', 1))
    h.alias('generatingProcessIdentificationNumber', 'generatingProcessIdentifier')
    h.alias('process', 'generatingProcessIdentifier')
    h.add(_.Unsigned('gridDefinition', 1))
    h.add(_.Codeflag('section1Flags', 1, "grib1/1.table"))
    h.alias('centreForTable2', 'centre')
    h.add(_.Codetable('indicatorOfParameter', 1, "grib1/2.[centreForTable2:l].[table2Version:l].table"))
    h.add(_.Codetable_title('parameterName', _.Get('indicatorOfParameter')))
    h.add(_.Codetable_units('parameterUnits', _.Get('indicatorOfParameter')))
    h.add(_.StringCodetable('indicatorOfTypeOfLevel', 1, "3.table", _.Get('tablesLocalDir'), _.Get('tablesMasterDir')))
    h.alias('levelType', 'indicatorOfTypeOfLevel')
    h.add(_.Transient('pressureUnits', "hPa"))
    h.add(_.Concept('typeOfLevelECMF', 'unknown', 'typeOfLevel.def', 'conceptsMasterDir', 'conceptsLocalDirECMF', True))
    h.add(_.Concept('typeOfLevel', 'typeOfLevelECMF', 'typeOfLevel.def', 'conceptsMasterDir', 'conceptsLocalDirAll', True))
    h.alias('vertical.typeOfLevel', 'typeOfLevel')
    pass  # when block
    h.alias('ls.typeOfLevel', 'typeOfLevel')

    if ((((((((((((h.get_l('indicatorOfTypeOfLevel') == 101) or (h.get_l('indicatorOfTypeOfLevel') == 104)) or (h.get_l('indicatorOfTypeOfLevel') == 106)) or (h.get_l('indicatorOfTypeOfLevel') == 108)) or (h.get_l('indicatorOfTypeOfLevel') == 110)) or (h.get_l('indicatorOfTypeOfLevel') == 112)) or (h.get_l('indicatorOfTypeOfLevel') == 114)) or (h.get_l('indicatorOfTypeOfLevel') == 116)) or (h.get_l('indicatorOfTypeOfLevel') == 120)) or (h.get_l('indicatorOfTypeOfLevel') == 121)) or (h.get_l('indicatorOfTypeOfLevel') == 128)) or (h.get_l('indicatorOfTypeOfLevel') == 141)):
        h.add(_.Unsigned('topLevel', 1))
        h.add(_.Unsigned('bottomLevel', 1))
        h.add(_.Sprintf('levels', "%d-%d", _.Get('topLevel'), _.Get('bottomLevel')))
        h.alias('ls.levels', 'levels')
        h.alias('vertical.level', 'topLevel')
        h.alias('vertical.topLevel', 'topLevel')
        h.alias('vertical.bottomLevel', 'bottomLevel')
    else:
        h.add(_.Unsigned('level', 2))

        if (h.get_l('indicatorOfTypeOfLevel') == 210):
            h.add(_.Scale('marsLevel', _.Get('level'), _.Get('oneConstant'), _.Get('hundred')))
            h.alias('mars.levelist', 'marsLevel')

        h.alias('vertical.level', 'level')
        h.alias('vertical.topLevel', 'level')
        h.alias('vertical.bottomLevel', 'level')
        h.alias('ls.level', 'level')
        h.alias('lev', 'level')

    if (((((h.get_l('indicatorOfTypeOfLevel') == 109) or (h.get_l('indicatorOfTypeOfLevel') == 100)) or (h.get_l('indicatorOfTypeOfLevel') == 110)) or (h.get_l('indicatorOfTypeOfLevel') == 113)) or (h.get_l('indicatorOfTypeOfLevel') == 117)):
        h.alias('mars.levelist', 'level')

    h.add(_.Unsigned('yearOfCentury', 1))
    h.add(_.Unsigned('month', 1))
    h.add(_.Unsigned('day', 1))
    h.add(_.Unsigned('hour', 1))
    h.add(_.Unsigned('minute', 1))
    h.add(_.Transient('second', 0))
    h.add(_.Codetable('unitOfTimeRange', 1, "grib1/4.table"))
    h.alias('unitOfTime', 'unitOfTimeRange')
    h.alias('indicatorOfUnitOfTimeRange', 'unitOfTimeRange')
    h.add(_.Unsigned('P1', 1))
    h.add(_.Unsigned('P2', 1))
    h.add(_.Codetable('timeRangeIndicator', 1, "5.table", _.Get('tablesLocalDir'), _.Get('tablesMasterDir')))
    h.add(_.Unsigned('numberIncludedInAverage', 2))
    h.add(_.Bits('mybits', _.Get('numberIncludedInAverage'), 0, 12))
    h.add(_.Unsigned('numberMissingFromAveragesOrAccumulations', 1))
    h.add(_.Unsigned('centuryOfReferenceTimeOfData', 1))
    h.add(_.Codetable('subCentre', 1, "grib1/0.[centre].table"))

    if (h.get_l('table2Version') >= 128):

        if ((h.get_l('centre') != 98) and (h.get_l('subCentre') == 98)):
            h.alias('centreForTable2', 'subCentre')
        else:
            h.alias('centreForTable2', 'centre')

    else:
        h.alias('centreForTable2', 'WMO')

    h.add(_.Concept('paramIdECMF', 'defaultParameter', 'paramId.def', 'conceptsMasterDir', 'conceptsLocalDirECMF', False))
    h.add(_.Concept('paramId', 'paramIdECMF', 'paramId.def', 'conceptsMasterDir', 'conceptsLocalDirAll', False))
    h.add(_.Concept('cfNameECMF', 'defaultName', 'cfName.def', 'conceptsMasterDir', 'conceptsLocalDirECMF', False))
    h.add(_.Concept('cfName', 'cfNameECMF', 'cfName.def', 'conceptsMasterDir', 'conceptsLocalDirAll', False))
    h.add(_.Concept('cfVarNameECMF', 'defaultName', 'cfVarName.def', 'conceptsMasterDir', 'conceptsLocalDirECMF', False))
    h.add(_.Concept('cfVarName', 'cfVarNameECMF', 'cfVarName.def', 'conceptsMasterDir', 'conceptsLocalDirAll', False))
    h.add(_.Concept('unitsECMF', 'defaultName', 'units.def', 'conceptsMasterDir', 'conceptsLocalDirECMF', False))
    h.add(_.Concept('units', 'unitsECMF', 'units.def', 'conceptsMasterDir', 'conceptsLocalDirAll', False))
    h.add(_.Concept('nameECMF', 'defaultName', 'name.def', 'conceptsMasterDir', 'conceptsLocalDirECMF', False))
    h.add(_.Concept('name', 'nameECMF', 'name.def', 'conceptsMasterDir', 'conceptsLocalDirAll', False))
    h.add(_.Signed('decimalScaleFactor', 2))
    h.add(_.Transient('setLocalDefinition', 0))
    h.add(_.Transient('optimizeScaleFactor', 0))
    h.add(_.G1date('dataDate', _.Get('centuryOfReferenceTimeOfData'), _.Get('yearOfCentury'), _.Get('month'), _.Get('day')))
    h.add(_.Evaluate('year', (_.Get('dataDate') / 10000)))
    h.add(_.Time('dataTime', _.Get('hour'), _.Get('minute'), _.Get('second')))
    h.add(_.Julian_day('julianDay', _.Get('dataDate'), _.Get('hour'), _.Get('minute'), _.Get('second')))
    h.add(_.TransientCodetable('stepUnits', 1, "stepUnits.table"))
    h.add(_.Concept('stepType', 'timeRangeIndicator', 'stepType.def', 'conceptsMasterDir', 'conceptsLocalDirAll', True))

    if (h.get_s('stepType') == "instant"):
        h.alias('productDefinitionTemplateNumber', 'zero')
    else:
        h.alias('productDefinitionTemplateNumber', 'eight')

    h.add(_.G1step_range('stepRange', _.Get('P1'), _.Get('P2'), _.Get('timeRangeIndicator'), _.Get('unitOfTimeRange'), _.Get('stepUnits'), _.Get('stepType')))
    h.add(_.Long_vector('startStep', _.Get('stepRange'), 0))
    h.add(_.Long_vector('endStep', _.Get('stepRange'), 1))
    h.alias('stepInHours', 'endStep')
    h.alias('ls.stepRange', 'stepRange')
    h.alias('ls.dataDate', 'dataDate')
    h.alias('mars.step', 'endStep')
    h.alias('mars.date', 'dataDate')
    h.alias('mars.levtype', 'indicatorOfTypeOfLevel')
    h.alias('mars.time', 'dataTime')
    h.add(_.Mars_param('marsParam', _.Get('paramId'), _.Get('gribTablesVersionNo'), _.Get('indicatorOfParameter')))
    h.alias('mars.param', 'marsParam')

    if ((h.get_l('centre') == 34) and (h.get_l('subCentre') == 241)):
        h.alias('mars.param', 'paramId')

        if (h.get_l('indicatorOfTypeOfLevel') == 101):
            h.add(_.Constant('sfc_levtype', "sfc"))
            h.alias('mars.levtype', 'sfc_levtype')


    h.add(_.Validity_date('validityDate', _.Get('dataDate'), _.Get('dataTime'), _.Get('step'), _.Get('stepUnits')))
    h.alias('time.validityDate', 'validityDate')
    h.add(_.Validity_time('validityTime', _.Get('dataDate'), _.Get('dataTime'), _.Get('step'), _.Get('stepUnits')))
    h.alias('time.validityTime', 'validityTime')
    h.add(_.Transient('deleteLocalDefinition', 0))

    if ((((h.get_l('section1Length') > 40) or h._new()) or (h.get_l('setLocalDefinition') > 0)) and (h.get_l('deleteLocalDefinition') == 0)):
        h.add(_.Constant('localUsePresent', 1))
        h.alias('grib2LocalSectionPresent', 'present')

        if ((h.get_l('centre') == h.get_l('ECMWF')) or ((h.get_l('centre') != h.get_l('ECMWF')) and (h.get_l('subCentre') == h.get_l('ECMWF')))):
            h.add(_.Pad('reservedNeedNotBePresent', 12))
            h.add(_.Codetable('localDefinitionNumber', 1, "grib1/localDefinitionNumber.98.table"))
            _.Template('grib1/local.98.[localDefinitionNumber:l].def', True).load(h)

            if h._changed('localDefinitionNumber'):

                if (not (h._new()) and (h.get_l('localDefinitionNumber') != 4)):
                    h.add(_.Section_padding('localExtensionPadding'))


            _.Template('mars/grib.[stream:s].[type:s].def', True).load(h)
        else:

            if (not (h._new()) or h.get_l('setLocalDefinition')):
                h.add(_.Pad('reservedNeedNotBePresent', 12))
                _.Template('grib1/local.[centre:l].def', True).load(h)
                h.add(_.Section_padding('localExtensionPadding'))

    else:
        h.add(_.Constant('localUsePresent', 0))

    h.add(_.Section_padding('section1Padding'))
    h.add(_.Concept('shortNameECMF', 'defaultShortName', 'shortName.def', 'conceptsMasterDir', 'conceptsLocalDirECMF', False))
    h.add(_.Concept('shortName', 'shortNameECMF', 'shortName.def', 'conceptsMasterDir', 'conceptsLocalDirAll', False))
    h.alias('ls.shortName', 'shortName')
    h.add(_.Ifs_param('ifsParam', _.Get('paramId'), _.Get('type')))
    h.alias('parameter.paramId', 'paramId')
    h.alias('parameter.shortName', 'shortName')
    h.alias('parameter.units', 'units')
    h.alias('parameter.name', 'name')
    h.alias('parameter', 'paramId')
    h.alias('short_name', 'shortName')
    h.alias('time.stepRange', 'stepRange')
    h.alias('time.stepUnits', 'stepUnits')
    h.alias('time.dataDate', 'dataDate')
    h.alias('time.dataTime', 'dataTime')
    h.alias('time.startStep', 'startStep')
    h.alias('time.endStep', 'endStep')
    h.alias('time.stepType', 'stepType')
    h.add(_.Concept('stepTypeForConversion', 'unknown', 'stepTypeForConversion.def', 'conceptsMasterDir', 'conceptsLocalDirAll', True))

    if (h.get_s('stepTypeForConversion') == "accum"):
        h.alias('productDefinitionTemplateNumber', 'eight')

    h.add(_.Md5('md5Section1', _.Get('offsetSection1'), _.Get('section1Length')))
    h.add(_.Md5('md5Product', _.Get('offsetSection1'), _.Get('section1Length'), _.Get('gridDefinition'), _.Get('section1Flags'), _.Get('decimalScaleFactor')))
Esempio n. 8
0
def load(h):

    h.add(
        _.Codetable('shapeOfTheEarth', 1, "3.2.table", _.Get('masterDir'),
                    _.Get('localDir')))
    h.add(_.Unsigned('scaleFactorOfRadiusOfSphericalEarth', 1))
    h.add(_.Unsigned('scaledValueOfRadiusOfSphericalEarth', 4))
    h.add(_.Unsigned('scaleFactorOfEarthMajorAxis', 1))
    h.alias('scaleFactorOfMajorAxisOfOblateSpheroidEarth',
            'scaleFactorOfEarthMajorAxis')
    h.add(_.Unsigned('scaledValueOfEarthMajorAxis', 4))
    h.alias('scaledValueOfMajorAxisOfOblateSpheroidEarth',
            'scaledValueOfEarthMajorAxis')
    h.add(_.Unsigned('scaleFactorOfEarthMinorAxis', 1))
    h.alias('scaleFactorOfMinorAxisOfOblateSpheroidEarth',
            'scaleFactorOfEarthMinorAxis')
    h.add(_.Unsigned('scaledValueOfEarthMinorAxis', 4))
    h.alias('scaledValueOfMinorAxisOfOblateSpheroidEarth',
            'scaledValueOfEarthMinorAxis')
    h.alias('earthIsOblate', 'one')

    if (h.get_l('shapeOfTheEarth') == 0):
        h.add(_.Transient('radius', 6367470))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 1):
        h.add(
            _.From_scale_factor_scaled_value(
                'radius', _.Get('scaleFactorOfRadiusOfSphericalEarth'),
                _.Get('scaledValueOfRadiusOfSphericalEarth')))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 6):
        h.add(_.Transient('radius', 6371229))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 8):
        h.add(_.Transient('radius', 6371200))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 2):
        h.add(_.Transient('earthMajorAxis', 6.37816e+06))
        h.add(_.Transient('earthMinorAxis', 6.35678e+06))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    if (h.get_l('shapeOfTheEarth') == 3):
        h.add(
            _.From_scale_factor_scaled_value(
                'earthMajorAxis', _.Get('scaleFactorOfEarthMajorAxis'),
                _.Get('scaledValueOfEarthMajorAxis')))
        h.add(
            _.From_scale_factor_scaled_value(
                'earthMinorAxis', _.Get('scaleFactorOfEarthMinorAxis'),
                _.Get('scaledValueOfEarthMinorAxis')))
        h.add(
            _.Divdouble('earthMajorAxisInMetres', _.Get('earthMajorAxis'),
                        0.001))
        h.add(
            _.Divdouble('earthMinorAxisInMetres', _.Get('earthMinorAxis'),
                        0.001))

    if (h.get_l('shapeOfTheEarth') == 7):
        h.add(
            _.From_scale_factor_scaled_value(
                'earthMajorAxis', _.Get('scaleFactorOfEarthMajorAxis'),
                _.Get('scaledValueOfEarthMajorAxis')))
        h.add(
            _.From_scale_factor_scaled_value(
                'earthMinorAxis', _.Get('scaleFactorOfEarthMinorAxis'),
                _.Get('scaledValueOfEarthMinorAxis')))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    if ((h.get_l('shapeOfTheEarth') == 4)
            or (h.get_l('shapeOfTheEarth') == 5)):
        h.add(_.Transient('earthMajorAxis', 6.37814e+06))
        h.add(_.Transient('earthMinorAxis', 6.35675e+06))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    if (h.get_l('shapeOfTheEarth') == 9):
        h.add(_.Transient('earthMajorAxis', 6.37756e+06))
        h.add(_.Transient('earthMinorAxis', 6.35626e+06))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')
Esempio n. 9
0
def load(h):

    h.add(_.Codetable('lcwfvSuiteName', 2, "grib2/lcwfv_suiteName.table"))
    h.alias('mars.origin', 'lcwfvSuiteName')
Esempio n. 10
0
def load(h):

    h.add(_.Constant('dataRepresentationType', 90))
    h.add(
        _.Codetable('parameterCategory', 1, "4.1.[discipline:l].table",
                    _.Get('masterDir'), _.Get('localDir')))
    h.add(
        _.Codetable('parameterNumber', 1,
                    "4.2.[discipline:l].[parameterCategory:l].table",
                    _.Get('masterDir'), _.Get('localDir')))
    h.add(_.Codetable_units('parameterUnits', _.Get('parameterNumber')))
    h.add(_.Codetable_title('parameterName', _.Get('parameterNumber')))
    h.add(
        _.Codetable('typeOfGeneratingProcess', 1, "4.3.table",
                    _.Get('masterDir'), _.Get('localDir')))
    h.add(_.Unsigned('backgroundProcess', 1))
    h.alias('backgroundGeneratingProcessIdentifier', 'backgroundProcess')
    h.add(_.Unsigned('generatingProcessIdentifier', 1))
    h.add(_.Unsigned('hoursAfterDataCutoff', 2))
    h.alias('hoursAfterReferenceTimeOfDataCutoff', 'hoursAfterDataCutoff')
    h.add(_.Unsigned('minutesAfterDataCutoff', 1))
    h.alias('minutesAfterReferenceTimeOfDataCutoff', 'minutesAfterDataCutoff')
    h.add(
        _.Codetable('indicatorOfUnitOfTimeRange', 1, "4.4.table",
                    _.Get('masterDir'), _.Get('localDir')))
    h.alias('defaultStepUnits', 'one')
    _.Template('grib2/localConcepts/[centre:s]/default_step_units.def',
               True).load(h)
    h.add(_.TransientCodetable('stepUnits', 1, "stepUnits.table"))
    h.add(_.Signed('forecastTime', 4))
    h.add(
        _.Step_in_units('startStep', _.Get('forecastTime'),
                        _.Get('indicatorOfUnitOfTimeRange'),
                        _.Get('stepUnits')))
    h.add(_.G2end_step('endStep', _.Get('startStep'), _.Get('stepUnits')))
    h.alias('step', 'startStep')
    h.alias('marsStep', 'startStep')
    h.alias('mars.step', 'startStep')
    h.alias('marsStartStep', 'startStep')
    h.alias('marsEndStep', 'endStep')
    h.add(_.G2step_range('stepRange', _.Get('startStep')))
    h.alias('ls.stepRange', 'stepRange')

    def stepTypeInternal_inline_concept(h):
        def wrapped(h):

            dummy = h.get_l('dummy')

            if dummy == 1:
                return 'instant'

        return wrapped

    h.add(
        _.Concept('stepTypeInternal',
                  None,
                  concepts=stepTypeInternal_inline_concept(h)))

    h.alias('time.stepType', 'stepType')
    h.alias('time.stepRange', 'stepRange')
    h.alias('time.stepUnits', 'stepUnits')
    h.alias('time.dataDate', 'dataDate')
    h.alias('time.dataTime', 'dataTime')
    h.alias('time.startStep', 'startStep')
    h.alias('time.endStep', 'endStep')
    h.add(
        _.Validity_date('validityDate', _.Get('dataDate'), _.Get('dataTime'),
                        _.Get('step'), _.Get('stepUnits')))
    h.alias('time.validityDate', 'validityDate')
    h.add(
        _.Validity_time('validityTime', _.Get('dataDate'), _.Get('dataTime'),
                        _.Get('step'), _.Get('stepUnits')))
    h.alias('time.validityTime', 'validityTime')
    h.add(_.Constant('typeOfLevel', "surface"))
    h.add(_.Constant('levelType', "surface"))
    h.add(_.Constant('level', 0))
    h.add(_.Unsigned('NB', 1))
    h.alias('numberOfContributingSpectralBands', 'NB')

    with h.list('listOfContributingSpectralBands'):
        for i in range(0, h.get_l('numberOfContributingSpectralBands')):
            h.add(_.Unsigned('satelliteSeries', 2))
            h.add(_.Unsigned('satelliteNumber', 2))
            h.add(_.Unsigned('instrumentType', 2))
            h.add(_.Unsigned('scaleFactorOfCentralWaveNumber', 1))
            h.add(_.Unsigned('scaledValueOfCentralWaveNumber', 4))
    h.add(
        _.Codetable('typeOfEnsembleForecast', 1, "4.6.table",
                    _.Get('masterDir'), _.Get('localDir')))
    h.add(_.Unsigned('perturbationNumber', 1))
    h.alias('number', 'perturbationNumber')
    h.add(_.Unsigned('numberOfForecastsInEnsemble', 1))
    h.alias('totalNumber', 'numberOfForecastsInEnsemble')

    if ((((((((h.get_l('productionStatusOfProcessedData') == 4) or
              (h.get_l('productionStatusOfProcessedData') == 5)) or
             (h.get_l('productionStatusOfProcessedData') == 6)) or
            (h.get_l('productionStatusOfProcessedData') == 7)) or
           (h.get_l('productionStatusOfProcessedData') == 8)) or
          (h.get_l('productionStatusOfProcessedData') == 9)) or
         (h.get_l('productionStatusOfProcessedData') == 10))
            or (h.get_l('productionStatusOfProcessedData') == 11)):
        h.alias('mars.number', 'perturbationNumber')

    h.add(_.Unsigned('yearOfEndOfOverallTimeInterval', 2))
    h.add(_.Unsigned('monthOfEndOfOverallTimeInterval', 1))
    h.add(_.Unsigned('dayOfEndOfOverallTimeInterval', 1))
    h.add(_.Unsigned('hourOfEndOfOverallTimeInterval', 1))
    h.add(_.Unsigned('minuteOfEndOfOverallTimeInterval', 1))
    h.add(_.Unsigned('secondOfEndOfOverallTimeInterval', 1))
    h.add(_.Unsigned('numberOfTimeRange', 1))
    h.alias('n', 'numberOfTimeRange')
    h.add(_.Unsigned('numberOfMissingInStatisticalProcess', 4))
    h.alias('totalNumberOfDataValuesMissingInStatisticalProcess',
            'numberOfMissingInStatisticalProcess')

    with h.list('statisticalProcessesList'):
        for i in range(0, h.get_l('numberOfTimeRange')):
            h.add(
                _.Codetable('typeOfStatisticalProcessing', 1, "4.10.table",
                            _.Get('masterDir'), _.Get('localDir')))
            h.add(
                _.Codetable('typeOfTimeIncrement', 1, "4.11.table",
                            _.Get('masterDir'), _.Get('localDir')))
            h.alias(
                'typeOfTimeIncrementBetweenSuccessiveFieldsUsedInTheStatisticalProcessing',
                'typeOfTimeIncrement')
            h.add(
                _.Codetable('indicatorOfUnitForTimeRange', 1, "4.4.table",
                            _.Get('masterDir'), _.Get('localDir')))
            h.add(_.Unsigned('lengthOfTimeRange', 4))
            h.add(
                _.Codetable('indicatorOfUnitForTimeIncrement', 1, "4.4.table",
                            _.Get('masterDir'), _.Get('localDir')))
            h.add(_.Unsigned('timeIncrement', 4))
            h.alias('timeIncrementBetweenSuccessiveFields', 'timeIncrement')

    if ((h.get_l('numberOfTimeRange') == 1)
            or (h.get_l('numberOfTimeRange') == 2)):

        def stepTypeInternal_inline_concept(h):
            def wrapped(h):

                typeOfStatisticalProcessing = h.get_l(
                    'typeOfStatisticalProcessing')

                if typeOfStatisticalProcessing == 255:
                    return 'instant'

                typeOfTimeIncrement = h.get_l('typeOfTimeIncrement')

                if typeOfStatisticalProcessing == 0 and typeOfTimeIncrement == 2:
                    return 'avg'

                if typeOfStatisticalProcessing == 0 and typeOfTimeIncrement == 3:
                    return 'avg'

                if typeOfStatisticalProcessing == 0 and typeOfTimeIncrement == 1:
                    return 'avgd'

                if typeOfStatisticalProcessing == 1 and typeOfTimeIncrement == 2:
                    return 'accum'

                if typeOfStatisticalProcessing == 2:
                    return 'max'

                if typeOfStatisticalProcessing == 3:
                    return 'min'

                if typeOfStatisticalProcessing == 4:
                    return 'diff'

                if typeOfStatisticalProcessing == 5:
                    return 'rms'

                if typeOfStatisticalProcessing == 6:
                    return 'sd'

                if typeOfStatisticalProcessing == 7:
                    return 'cov'

                if typeOfStatisticalProcessing == 8:
                    return 'sdiff'

                if typeOfStatisticalProcessing == 9:
                    return 'ratio'

                if typeOfStatisticalProcessing == 10:
                    return 'stdanom'

                if typeOfStatisticalProcessing == 11:
                    return 'sum'

            return wrapped

        h.add(
            _.Concept('stepTypeInternal',
                      None,
                      concepts=stepTypeInternal_inline_concept(h)))

        h.add(
            _.Step_in_units('startStep', _.Get('forecastTime'),
                            _.Get('indicatorOfUnitOfTimeRange'),
                            _.Get('stepUnits'),
                            _.Get('indicatorOfUnitForTimeRange'),
                            _.Get('lengthOfTimeRange')))
        h.add(
            _.G2end_step('endStep', _.Get('startStep'), _.Get('stepUnits'),
                         _.Get('year'), _.Get('month'), _.Get('day'),
                         _.Get('hour'), _.Get('minute'), _.Get('second'),
                         _.Get('yearOfEndOfOverallTimeInterval'),
                         _.Get('monthOfEndOfOverallTimeInterval'),
                         _.Get('dayOfEndOfOverallTimeInterval'),
                         _.Get('hourOfEndOfOverallTimeInterval'),
                         _.Get('minuteOfEndOfOverallTimeInterval'),
                         _.Get('secondOfEndOfOverallTimeInterval'),
                         _.Get('indicatorOfUnitForTimeRange'),
                         _.Get('lengthOfTimeRange'),
                         _.Get('typeOfTimeIncrement'),
                         _.Get('numberOfTimeRange')))
        h.add(_.G2step_range('stepRange', _.Get('startStep'),
                             _.Get('endStep')))
    else:
        h.add(_.Constant('stepType', "multiple steps"))
        h.add(_.Constant('stepTypeInternal', "multiple steps"))
        h.add(_.Constant('endStep', "unavailable"))
        h.add(_.Constant('startStep', "unavailable"))
        h.add(_.Constant('stepRange', "unavailable"))

    h.alias('ls.stepRange', 'stepRange')
    h.alias('mars.step', 'endStep')
    h.alias('time.stepType', 'stepType')
    h.alias('time.stepRange', 'stepRange')
    h.alias('time.stepUnits', 'stepUnits')
    h.alias('time.dataDate', 'dataDate')
    h.alias('time.dataTime', 'dataTime')
    h.alias('time.startStep', 'startStep')
    h.alias('time.endStep', 'endStep')
    h.add(
        _.Validity_date('validityDate', _.Get('date'), _.Get('dataTime'),
                        _.Get('step'), _.Get('stepUnits'),
                        _.Get('yearOfEndOfOverallTimeInterval'),
                        _.Get('monthOfEndOfOverallTimeInterval'),
                        _.Get('dayOfEndOfOverallTimeInterval')))
    h.alias('time.validityDate', 'validityDate')
    h.add(
        _.Validity_time('validityTime', _.Get('date'), _.Get('dataTime'),
                        _.Get('step'), _.Get('stepUnits'),
                        _.Get('hourOfEndOfOverallTimeInterval'),
                        _.Get('minuteOfEndOfOverallTimeInterval')))
    h.alias('time.validityTime', 'validityTime')
    h.alias('instrument', 'instrumentType')
    h.alias('ident', 'satelliteNumber')
Esempio n. 11
0
def load(h):

    h.add(_.Transient('biFourierMakeTemplate', 0))
    h.add(_.Label('BiFourier coefficients'))
    h.add(_.Constant('biFourierCoefficients', 1))
    h.add(_.Codetable('spectralType', 1, "3.6.table", _.Get('masterDir'), _.Get('localDir')))
    h.alias('spectralDataRepresentationType', 'spectralType')
    h.add(_.Unsigned('biFourierResolutionParameterN', 4))
    h.add(_.Unsigned('biFourierResolutionParameterM', 4))
    h.add(_.Codetable('biFourierTruncationType', 1, "3.25.table", _.Get('masterDir'), _.Get('localDir')))
    h.add(_.Unsigned('Lx', 8))
    h.alias('geography.LxInMetres', 'Lx')
    h.add(_.Unsigned('Lux', 8))
    h.alias('geography.LuxInMetres', 'Lux')
    h.add(_.Unsigned('Lcx', 8))
    h.alias('geography.LcxInMetres', 'Lcx')
    h.add(_.Unsigned('Ly', 8))
    h.alias('geography.LyInMetres', 'Ly')
    h.add(_.Unsigned('Luy', 8))
    h.alias('geography.LuyInMetres', 'Luy')
    h.add(_.Unsigned('Lcy', 8))
    h.alias('geography.LcyInMetres', 'Lcy')
    h.add(_.Codetable('shapeOfTheEarth', 1, "3.2.table", _.Get('masterDir'), _.Get('localDir')))
    h.add(_.Unsigned('scaleFactorOfRadiusOfSphericalEarth', 1))
    h.add(_.Unsigned('scaledValueOfRadiusOfSphericalEarth', 4))
    h.add(_.Unsigned('scaleFactorOfEarthMajorAxis', 1))
    h.alias('scaleFactorOfMajorAxisOfOblateSpheroidEarth', 'scaleFactorOfEarthMajorAxis')
    h.add(_.Unsigned('scaledValueOfEarthMajorAxis', 4))
    h.alias('scaledValueOfMajorAxisOfOblateSpheroidEarth', 'scaledValueOfEarthMajorAxis')
    h.add(_.Unsigned('scaleFactorOfEarthMinorAxis', 1))
    h.alias('scaleFactorOfMinorAxisOfOblateSpheroidEarth', 'scaleFactorOfEarthMinorAxis')
    h.add(_.Unsigned('scaledValueOfEarthMinorAxis', 4))
    h.alias('scaledValueOfMinorAxisOfOblateSpheroidEarth', 'scaledValueOfEarthMinorAxis')
    h.alias('earthIsOblate', 'one')

    if (h.get_l('shapeOfTheEarth') == 0):
        h.add(_.Transient('radius', 6367470))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 1):
        h.add(_.From_scale_factor_scaled_value('radius', _.Get('scaleFactorOfRadiusOfSphericalEarth'), _.Get('scaledValueOfRadiusOfSphericalEarth')))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 6):
        h.add(_.Transient('radius', 6371229))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 8):
        h.add(_.Transient('radius', 6371200))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 2):
        h.add(_.Transient('earthMajorAxis', 6.37816e+06))
        h.add(_.Transient('earthMinorAxis', 6.35678e+06))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    if (h.get_l('shapeOfTheEarth') == 3):
        h.add(_.From_scale_factor_scaled_value('earthMajorAxis', _.Get('scaleFactorOfEarthMajorAxis'), _.Get('scaledValueOfEarthMajorAxis')))
        h.add(_.From_scale_factor_scaled_value('earthMinorAxis', _.Get('scaleFactorOfEarthMinorAxis'), _.Get('scaledValueOfEarthMinorAxis')))
        h.add(_.Divdouble('earthMajorAxisInMetres', _.Get('earthMajorAxis'), 0.001))
        h.add(_.Divdouble('earthMinorAxisInMetres', _.Get('earthMinorAxis'), 0.001))

    if (h.get_l('shapeOfTheEarth') == 7):
        h.add(_.From_scale_factor_scaled_value('earthMajorAxis', _.Get('scaleFactorOfEarthMajorAxis'), _.Get('scaledValueOfEarthMajorAxis')))
        h.add(_.From_scale_factor_scaled_value('earthMinorAxis', _.Get('scaleFactorOfEarthMinorAxis'), _.Get('scaledValueOfEarthMinorAxis')))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    if ((h.get_l('shapeOfTheEarth') == 4) or (h.get_l('shapeOfTheEarth') == 5)):
        h.add(_.Transient('earthMajorAxis', 6.37814e+06))
        h.add(_.Transient('earthMinorAxis', 6.35675e+06))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    if (h.get_l('shapeOfTheEarth') == 9):
        h.add(_.Transient('earthMajorAxis', 6.37756e+06))
        h.add(_.Transient('earthMinorAxis', 6.35626e+06))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    h.add(_.Signed('latitudeOfFirstGridPoint', 4))
    h.alias('La1', 'latitudeOfFirstGridPoint')
    h.add(_.Scale('latitudeOfFirstGridPointInDegrees', _.Get('latitudeOfFirstGridPoint'), _.Get('oneConstant'), _.Get('grib2divider'), _.Get('truncateDegrees')))
    h.alias('geography.latitudeOfFirstGridPointInDegrees', 'latitudeOfFirstGridPointInDegrees')
    h.add(_.Signed('longitudeOfFirstGridPoint', 4))
    h.alias('Lo1', 'longitudeOfFirstGridPoint')
    h.add(_.Scale('longitudeOfFirstGridPointInDegrees', _.Get('longitudeOfFirstGridPoint'), _.Get('oneConstant'), _.Get('grib2divider'), _.Get('truncateDegrees')))
    h.alias('geography.longitudeOfFirstGridPointInDegrees', 'longitudeOfFirstGridPointInDegrees')
    h.add(_.Signed('LaD', 4))
    h.add(_.Scale('LaDInDegrees', _.Get('LaD'), _.Get('oneConstant'), _.Get('grib2divider'), _.Get('truncateDegrees')))
    h.alias('geography.LaDInDegrees', 'LaDInDegrees')
    h.add(_.Signed('latitudeOfLastGridPoint', 4))
    h.alias('La2', 'latitudeOfLastGridPoint')
    h.add(_.Scale('latitudeOfLastGridPointInDegrees', _.Get('latitudeOfLastGridPoint'), _.Get('oneConstant'), _.Get('grib2divider'), _.Get('truncateDegrees')))
    h.alias('geography.latitudeOfLastGridPointInDegrees', 'latitudeOfLastGridPointInDegrees')
    h.add(_.Signed('longitudeOfLastGridPoint', 4))
    h.alias('Lo2', 'longitudeOfLastGridPoint')
    h.add(_.Scale('longitudeOfLastGridPointInDegrees', _.Get('longitudeOfLastGridPoint'), _.Get('oneConstant'), _.Get('grib2divider'), _.Get('truncateDegrees')))
    h.alias('geography.longitudeOfLastGridPointInDegrees', 'longitudeOfLastGridPointInDegrees')
    h.add(_.Unsigned('orientationOfTheGrid', 4))
    h.add(_.Scale('orientationOfTheGridInDegrees', _.Get('orientationOfTheGrid'), _.Get('oneConstant'), _.Get('grib2divider'), _.Get('truncateDegrees')))
    h.alias('geography.orientationOfTheGridInDegrees', 'orientationOfTheGridInDegrees')
Esempio n. 12
0
def load(h):

    h.add(_.Codetable('localDefinitionNumber', 1, "grib1/localDefinitionNumber.34.table"))
    _.Template('grib1/local.34.[localDefinitionNumber:l].def').load(h)
    _.Template('mars/grib.[stream:s].[type:s].def', True).load(h)
Esempio n. 13
0
def load(h):

    _.Template('grib1/mars_labeling.def').load(h)
    h.add(_.Unsigned('perturbationNumber', 1))
    h.alias('number', 'perturbationNumber')
    h.add(_.Unsigned('numberOfForecastsInEnsemble', 1))
    h.alias('totalNumber', 'numberOfForecastsInEnsemble')
    h.add(_.Unsigned('directionNumber', 1))
    h.alias('mars.direction', 'directionNumber')
    h.add(_.Unsigned('frequencyNumber', 1))
    h.alias('mars.frequency', 'frequencyNumber')
    h.add(_.Unsigned('numberOfDirections', 1))
    h.alias('totalNumberOfDirections', 'numberOfDirections')
    h.add(_.Unsigned('numberOfFrequencies', 1))
    h.alias('totalNumberOfFrequencies', 'numberOfFrequencies')
    h.add(_.Unsigned('directionScalingFactor', 4))
    h.alias('integerScalingFactorAppliedToDirections', 'directionScalingFactor')
    h.add(_.Unsigned('frequencyScalingFactor', 4))
    h.alias('integerScalingFactorAppliedToFrequencies', 'frequencyScalingFactor')
    h.add(_.Constant('localFlagLatestVersion', 4))
    h.add(_.Codetable('localFlag', 1, "grib1/local.13.table"))

    if (h.get_l('localFlag') == 0):
        h.add(_.Pad('padding_loc13_1', 36))

    if (h.get_l('localFlag') == 1):
        h.add(_.Unsigned('systemNumber', 2))
        h.add(_.Unsigned('methodNumber', 2))
        h.alias('system', 'systemNumber')
        h.alias('method', 'methodNumber')
        h.add(_.Pad('padding_loc13_2', 32))

    if (h.get_l('localFlag') == 2):
        h.add(_.Unsigned('systemNumber', 2))
        h.add(_.Unsigned('methodNumber', 2))
        h.add(_.Unsigned('referenceDate', 4))
        h.add(_.Unsigned('climateDateFrom', 4))
        h.add(_.Unsigned('climateDateTo', 4))
        h.alias('system', 'systemNumber')
        h.alias('method', 'methodNumber')
        h.alias('refdate', 'referenceDate')
        h.add(_.Pad('padding_loc13_3', 20))

    if (h.get_l('localFlag') == 3):
        h.add(_.Unsigned('systemNumber', 2))
        h.add(_.Unsigned('methodNumber', 2))
        h.add(_.Unsigned('referenceDate', 4))
        h.add(_.Unsigned('climateDateFrom', 4))
        h.add(_.Unsigned('climateDateTo', 4))
        h.add(_.Unsigned('legBaseDate', 4))
        h.alias('baseDateOfThisLeg', 'legBaseDate')
        h.add(_.Unsigned('legBaseTime', 2))
        h.alias('baseTimeOfThisLeg', 'legBaseTime')
        h.add(_.Unsigned('legNumber', 1))
        h.add(_.Unsigned('oceanAtmosphereCoupling', 1))
        h.add(_.Pad('padding_loc13_4', 12))
        h.alias('system', 'systemNumber')
        h.alias('method', 'methodNumber')
        h.alias('refdate', 'referenceDate')
        h.alias('mars._leg_number', 'legNumber')

    if (h.get_l('localFlag') == 4):
        h.add(_.Unsigned('systemNumber', 2))
        h.add(_.Unsigned('methodNumber', 2))
        h.add(_.Unsigned('referenceDate', 4))
        h.add(_.Unsigned('climateDateFrom', 4))
        h.add(_.Unsigned('climateDateTo', 4))
        h.add(_.Unsigned('legBaseDate', 4))
        h.alias('baseDateOfThisLeg', 'legBaseDate')
        h.add(_.Unsigned('legBaseTime', 2))
        h.alias('baseTimeOfThisLeg', 'legBaseTime')
        h.add(_.Unsigned('legNumber', 1))
        h.add(_.Unsigned('oceanAtmosphereCoupling', 1))
        h.add(_.Unsigned('offsetToEndOf4DvarWindow', 2))
        h.alias('anoffset', 'offsetToEndOf4DvarWindow')
        h.add(_.Unsigned('lengthOf4DvarWindow', 2))
        h.alias('system', 'systemNumber')
        h.alias('method', 'methodNumber')
        h.alias('refdate', 'referenceDate')
        h.alias('mars._leg_number', 'legNumber')
        h.add(_.Pad('padding_loc13_5', 8))

    h.add(_.Unsigned('scaledDirections', 4, _.Get('numberOfDirections')))
    h.add(_.Unsigned('scaledFrequencies', 4, _.Get('numberOfFrequencies')))
    h.add(_.Constant('GRIBEXSection1Problem', (((100 + (4 * _.Get('numberOfDirections'))) + (4 * _.Get('numberOfFrequencies'))) - _.Get('section1Length'))))
Esempio n. 14
0
def load(h):

    h.add(_.Position('offsetSection1'))
    h.add(_.Section_length('section1Length', 4))
    h.add(_.Section_pointer('section1Pointer', _.Get('offsetSection1'), _.Get('section1Length'), 1))
    h.add(_.Unsigned('numberOfSection', 1))
    h.add(_.StringCodetable('centre', 2, "common/c-11.table"))
    h.alias('identificationOfOriginatingGeneratingCentre', 'centre')
    h.add(_.Codetable_title('centreDescription', _.Get('centre')))
    h.alias('parameter.centre', 'centre')
    h.alias('ls.centre', 'centre')
    h.alias('originatingCentre', 'centre')
    h.add(_.Unsigned('subCentre', 2))

    if (h.get_l('subCentre') == 98):
        h.alias('centreForLocal', 'subCentre')
    else:
        h.alias('centreForLocal', 'centre')

    h.add(_.Codetable('tablesVersion', 1, "grib2/tables/1.0.table"))
    h.alias('gribMasterTablesVersionNumber', 'tablesVersion')
    h.add(_.Transient('masterDir', "grib2/tables/[tablesVersion]"))

    if (h.get_l('tablesVersion') > h.get_l('tablesVersionLatest')):
        h.add(_.Transient('masterDir', "grib2/tables/[tablesVersionLatest]"))

    pass  # when block
    h.add(_.Codetable('localTablesVersion', 1, "grib2/tables/local/[centreForLocal]/1.1.table"))
    h.alias('versionNumberOfGribLocalTables', 'localTablesVersion')
    h.add(_.Transient('localDir', ""))

    if ((h.get_l('localTablesVersion') != 0) and (h.get_l('localTablesVersion') != 255)):
        h.add(_.Transient('localDir', "grib2/tables/local/[centre]/[localTablesVersion]"))

    h.add(_.Codetable('significanceOfReferenceTime', 1, "1.2.table", _.Get('masterDir'), _.Get('localDir')))
    h.add(_.Unsigned('year', 2))
    h.add(_.Unsigned('month', 1))
    h.add(_.Unsigned('day', 1))
    h.add(_.Unsigned('hour', 1))
    h.add(_.Unsigned('minute', 1))
    h.add(_.Unsigned('second', 1))
    h.add(_.G2date('dataDate', _.Get('year'), _.Get('month'), _.Get('day')))
    h.alias('mars.date', 'dataDate')
    h.alias('ls.date', 'dataDate')
    h.add(_.Julian_day('julianDay', _.Get('dataDate'), _.Get('hour'), _.Get('minute'), _.Get('second')))
    h.add(_.Time('dataTime', _.Get('hour'), _.Get('minute'), _.Get('second')))
    h.alias('mars.time', 'dataTime')
    h.add(_.Codetable('productionStatusOfProcessedData', 1, "1.3.table", _.Get('masterDir'), _.Get('localDir')))
    h.add(_.StringCodetable('typeOfProcessedData', 1, "1.4.table", _.Get('masterDir'), _.Get('localDir')))
    h.alias('ls.dataType', 'typeOfProcessedData')
    h.add(_.Md5('md5Section1', _.Get('offsetSection1'), _.Get('section1Length')))
    h.add(_.Select_step_template('selectStepTemplateInterval', _.Get('productDefinitionTemplateNumber'), 0))
    h.add(_.Select_step_template('selectStepTemplateInstant', _.Get('productDefinitionTemplateNumber'), 1))
    h.add(_.Transient('stepTypeInternal', "instant"))

    def stepType_inline_concept(h):
        def wrapped(h):

            selectStepTemplateInstant = h.get_l('selectStepTemplateInstant')
            stepTypeInternal = h.get_s('stepTypeInternal')

            if selectStepTemplateInstant == 1 and stepTypeInternal == "instant":
                return 'instant'

            selectStepTemplateInterval = h.get_l('selectStepTemplateInterval')

            if selectStepTemplateInterval == 1 and stepTypeInternal == "avg":
                return 'avg'

            if selectStepTemplateInterval == 1 and stepTypeInternal == "avgd":
                return 'avgd'

            if selectStepTemplateInterval == 1 and stepTypeInternal == "accum":
                return 'accum'

            if selectStepTemplateInterval == 1 and stepTypeInternal == "max":
                return 'max'

            if selectStepTemplateInterval == 1 and stepTypeInternal == "min":
                return 'min'

            if selectStepTemplateInterval == 1 and stepTypeInternal == "diff":
                return 'diff'

            if selectStepTemplateInterval == 1 and stepTypeInternal == "sdiff":
                return 'sdiff'

            if selectStepTemplateInterval == 1 and stepTypeInternal == "rms":
                return 'rms'

            if selectStepTemplateInterval == 1 and stepTypeInternal == "sd":
                return 'sd'

            if selectStepTemplateInterval == 1 and stepTypeInternal == "cov":
                return 'cov'

            if selectStepTemplateInterval == 1 and stepTypeInternal == "ratio":
                return 'ratio'

            if selectStepTemplateInterval == 1 and stepTypeInternal == "stdanom":
                return 'stdanom'

            if selectStepTemplateInterval == 1 and stepTypeInternal == "sum":
                return 'sum'

        return wrapped

    h.add(_.Concept('stepType', None, concepts=stepType_inline_concept(h)))

    h.add(_.G2_chemical('is_chemical', _.Get('productDefinitionTemplateNumber'), _.Get('stepType'), 0))
    h.add(_.G2_chemical('is_chemical_distfn', _.Get('productDefinitionTemplateNumber'), _.Get('stepType'), 1))
    h.add(_.G2_aerosol('is_aerosol', _.Get('productDefinitionTemplateNumber'), _.Get('stepType'), 0))
    h.add(_.G2_aerosol('is_aerosol_optical', _.Get('productDefinitionTemplateNumber'), _.Get('stepType'), 1))
    h.add(_.Transient('setCalendarId', 0))
    h.add(_.Transient('deleteCalendarId', 0))
    h.alias('calendarIdPresent', 'zero')

    if (((h.get_l('section1Length') > 21) or (h.get_l('setCalendarId') > 0)) and (h.get_l('deleteCalendarId') == 0)):
        h.alias('calendarIdPresent', 'present')
        h.add(_.StringCodetable('calendarIdentificationTemplateNumber', 2, "1.5.table", _.Get('masterDir'), _.Get('localDir')))
        _.Template('grib2/template.1.[calendarIdentificationTemplateNumber:l].def').load(h)

    def is_uerra_inline_concept(h):
        def wrapped(h):

            productionStatusOfProcessedData = h.get_l('productionStatusOfProcessedData')

            if productionStatusOfProcessedData == 10:
                return 1

            if productionStatusOfProcessedData == 11:
                return 1

            if productionStatusOfProcessedData == 9:
                return 1

            if productionStatusOfProcessedData == 8:
                return 1

            dummy = h.get_l('dummy')

            if dummy == 1:
                return 0

        return wrapped

    h.add(_.Concept('is_uerra', 'zero', concepts=is_uerra_inline_concept(h)))
def load(h):

    h.add(
        _.Codetable('typeOfOriginalFieldValues', 1, "5.1.table",
                    _.Get('masterDir'), _.Get('localDir')))
Esempio n. 16
0
def load(h):

    h.add(
        _.Codetable('typeOfCalendar', 1, "1.6.table", _.Get('masterDir'),
                    _.Get('localDir')))
Esempio n. 17
0
def load(h):

    h.add(_.Transient('timeRangeIndicator', 0))
    h.add(_.Position('offsetSection4'))
    h.add(_.Section_length('section4Length', 4))
    h.add(
        _.Section_pointer('section4Pointer', _.Get('offsetSection4'),
                          _.Get('section4Length'), 4))
    h.add(_.Unsigned('numberOfSection', 1))
    h.add(_.Unsigned('NV', 2))
    h.alias('numberOfVerticalCoordinateValues', 'NV')
    h.alias('numberOfCoordinatesValues', 'NV')
    h.alias('numberOfVerticalGridDescriptors', 'NV')
    h.add(_.Transient('neitherPresent', 0))

    if ((h.get_l('centre') == 7) or (h.get_l('centre') == 46)):
        h.alias('disableGrib1LocalSection', 'one')

    h.add(
        _.Codetable('productDefinitionTemplateNumber', 2, "4.0.table",
                    _.Get('masterDir'), _.Get('localDir')))

    if (h.get_l('section2Used') == 1):
        pass  # when block

    h.add(_.Transient('genVertHeightCoords', 0))
    _.Template(
        'grib2/template.4.[productDefinitionTemplateNumber:l].def').load(h)

    if (h._defined('marsStream') and h._defined('marsType')):
        _.Template('mars/grib.[marsStream:s].[marsType:s].def', True).load(h)

    _.Template('grib2/parameters.def').load(h)

    if h._defined('typeOfFirstFixedSurface'):

        if (h.get_l('typeOfFirstFixedSurface') == 150):
            h.add(_.Transient('genVertHeightCoords', 1))
            h.add(_.Transient('PVPresent', 0))

    if h.get_l('genVertHeightCoords'):
        h.add(_.Ieeefloat('nlev', 4))
        h.add(_.Ieeefloat('numberOfVGridUsed', 4))
        h.add(_.Bytes('uuidOfVGrid', 16))
        h.alias('numberOfVerticalCoordinateValues', 'nlev')
        h.alias('numberOfCoordinatesValues', 'nlev')
        h.alias('numberOfVerticalGridDescriptors', 'nlev')
    else:

        if (h.get_l('NV') == 0):
            h.add(_.Transient('PVPresent', 0))
        else:
            h.add(_.Transient('PVPresent', 1))

        if (h.get_l('PVPresent') or (h.get_l('NV') > 0)):
            h.add(_.Ieeefloat('pv', 4, _.Get('numberOfCoordinatesValues')))
            h.alias('vertical.pv', 'pv')

        def deletePV_inline_concept(h):
            def wrapped(h):

                PVPresent = h.get_l('PVPresent')
                NV = h.get_l('NV')

                if PVPresent == 0 and NV == 0:
                    return 1

            return wrapped

        h.add(
            _.Concept('deletePV',
                      'unknown',
                      concepts=deletePV_inline_concept(h)))

    h.add(
        _.Md5('md5Section4', _.Get('offsetSection4'), _.Get('section4Length')))
Esempio n. 18
0
def load(h):

    h.add(
        _.Codetable('localDefinitionNumber', 1,
                    "grib1/localDefinitionNumber.7.table"))
    _.Template('grib1/local.7.[localDefinitionNumber:l].def').load(h)
Esempio n. 19
0
def load(h):

    h.add(_.Position('offsetSection2'))
    h.add(_.Section_length('section2Length', 3))
    h.add(_.Section_pointer('section2Pointer', _.Get('offsetSection2'), _.Get('section2Length'), 2))
    h.add(_.Transient('radius', 6367470))
    h.alias('radiusOfTheEarth', 'radius')
    h.alias('radiusInMetres', 'radius')
    h.add(_.Transient('shapeOfTheEarth', 6))
    h.add(_.Unsigned('numberOfVerticalCoordinateValues', 1))
    h.add(_.Constant('neitherPresent', 255))
    h.alias('NV', 'numberOfVerticalCoordinateValues')
    h.alias('numberOfCoordinatesValues', 'numberOfVerticalCoordinateValues')
    h.add(_.Unsigned('pvlLocation', 1))
    h.add(_.Codetable('dataRepresentationType', 1, "grib1/6.table"))
    h.add(_.Codetable_title('gridDefinitionDescription', _.Get('dataRepresentationType')))
    h.alias('isRotatedGrid', 'zero')

    if (h.get_l('dataRepresentationType') < 192):
        _.Template('grib1/grid_definition_[dataRepresentationType:l].def').load(h)
    else:
        _.Template('grib1/grid_definition_[dataRepresentationType:l].[centre:l].def').load(h)

    h.add(_.Position('endGridDefinition'))
    h.add(_.Position('offsetBeforePV'))
    h.add(_.Transient('PVPresent', (_.Get('NV') > 0)))

    if (h.get_l('pvlLocation') != h.get_l('neitherPresent')):
        h.add(_.Padto('padding_sec2_2', ((_.Get('offsetSection2') + _.Get('pvlLocation')) - 1)))
    else:
        h.add(_.Padto('padding_sec2_2', (_.Get('offsetSection2') + 32)))

    if h.get_l('PVPresent'):
        h.add(_.Ibmfloat('pv', 4, _.Get('NV')))
        h.alias('vertical.pv', 'pv')

    h.add(_.Position('offsetBeforePL'))
    h.add(_.Transient('PLPresent', _.And((_.Get('section2Length') > (_.Get('offsetBeforePL') - _.Get('offsetSection2'))), (_.Get('section2Length') >= (((_.Get('Nj') * 2) + _.Get('offsetBeforePL')) - _.Get('offsetSection2'))))))

    if h.get_l('PLPresent'):
        h.add(_.Constant('numberOfOctectsForNumberOfPoints', 2))
        h.add(_.Constant('interpretationOfNumberOfPoints', 1))
        h.add(_.Unsigned('pl', 2, _.Get('Nj')))
        h.alias('geography.pl', 'pl')

    if ((h.get_l('PVPresent') == 0) and (h.get_l('PLPresent') == 0)):
        h.add(_.Padto('padding_sec2_1', (_.Get('offsetSection2') + 32)))

    pass  # when block
    pass  # when block
    h.alias('reducedGrid', 'PLPresent')

    def deletePV_inline_concept(h):
        def wrapped(h):

            PVPresent = h.get_l('PVPresent')
            NV = h.get_l('NV')

            if PVPresent == 0 and NV == 0:
                return 1

        return wrapped

    h.add(_.Concept('deletePV', 'unknown', concepts=deletePV_inline_concept(h)))

    h.add(_.Padtoeven('padding_sec2_3', _.Get('offsetSection2'), _.Get('section2Length')))
    h.add(_.Md5('md5Section2', _.Get('offsetSection2'), _.Get('section2Length')))
    h.alias('md5GridSection', 'md5Section2')
Esempio n. 20
0
def load(h):

    h.add(
        _.Codetable('shapeOfTheEarth', 1, "3.2.table", _.Get('masterDir'),
                    _.Get('localDir')))
    h.add(_.Unsigned('scaleFactorOfRadiusOfSphericalEarth', 1))
    h.add(_.Unsigned('scaledValueOfRadiusOfSphericalEarth', 4))
    h.add(_.Unsigned('scaleFactorOfEarthMajorAxis', 1))
    h.alias('scaleFactorOfMajorAxisOfOblateSpheroidEarth',
            'scaleFactorOfEarthMajorAxis')
    h.add(_.Unsigned('scaledValueOfEarthMajorAxis', 4))
    h.alias('scaledValueOfMajorAxisOfOblateSpheroidEarth',
            'scaledValueOfEarthMajorAxis')
    h.add(_.Unsigned('scaleFactorOfEarthMinorAxis', 1))
    h.alias('scaleFactorOfMinorAxisOfOblateSpheroidEarth',
            'scaleFactorOfEarthMinorAxis')
    h.add(_.Unsigned('scaledValueOfEarthMinorAxis', 4))
    h.alias('scaledValueOfMinorAxisOfOblateSpheroidEarth',
            'scaledValueOfEarthMinorAxis')
    h.alias('earthIsOblate', 'one')

    if (h.get_l('shapeOfTheEarth') == 0):
        h.add(_.Transient('radius', 6367470))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 1):
        h.add(
            _.From_scale_factor_scaled_value(
                'radius', _.Get('scaleFactorOfRadiusOfSphericalEarth'),
                _.Get('scaledValueOfRadiusOfSphericalEarth')))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 6):
        h.add(_.Transient('radius', 6371229))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 8):
        h.add(_.Transient('radius', 6371200))
        h.alias('radiusOfTheEarth', 'radius')
        h.alias('radiusInMetres', 'radius')
        h.alias('earthIsOblate', 'zero')

    if (h.get_l('shapeOfTheEarth') == 2):
        h.add(_.Transient('earthMajorAxis', 6.37816e+06))
        h.add(_.Transient('earthMinorAxis', 6.35678e+06))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    if (h.get_l('shapeOfTheEarth') == 3):
        h.add(
            _.From_scale_factor_scaled_value(
                'earthMajorAxis', _.Get('scaleFactorOfEarthMajorAxis'),
                _.Get('scaledValueOfEarthMajorAxis')))
        h.add(
            _.From_scale_factor_scaled_value(
                'earthMinorAxis', _.Get('scaleFactorOfEarthMinorAxis'),
                _.Get('scaledValueOfEarthMinorAxis')))
        h.add(
            _.Divdouble('earthMajorAxisInMetres', _.Get('earthMajorAxis'),
                        0.001))
        h.add(
            _.Divdouble('earthMinorAxisInMetres', _.Get('earthMinorAxis'),
                        0.001))

    if (h.get_l('shapeOfTheEarth') == 7):
        h.add(
            _.From_scale_factor_scaled_value(
                'earthMajorAxis', _.Get('scaleFactorOfEarthMajorAxis'),
                _.Get('scaledValueOfEarthMajorAxis')))
        h.add(
            _.From_scale_factor_scaled_value(
                'earthMinorAxis', _.Get('scaleFactorOfEarthMinorAxis'),
                _.Get('scaledValueOfEarthMinorAxis')))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    if ((h.get_l('shapeOfTheEarth') == 4)
            or (h.get_l('shapeOfTheEarth') == 5)):
        h.add(_.Transient('earthMajorAxis', 6.37814e+06))
        h.add(_.Transient('earthMinorAxis', 6.35675e+06))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    if (h.get_l('shapeOfTheEarth') == 9):
        h.add(_.Transient('earthMajorAxis', 6.37756e+06))
        h.add(_.Transient('earthMinorAxis', 6.35626e+06))
        h.alias('earthMajorAxisInMetres', 'earthMajorAxis')
        h.alias('earthMinorAxisInMetres', 'earthMinorAxis')

    h.add(_.Unsigned('Ni', 4))
    h.alias('numberOfPointsAlongAParallel', 'Ni')
    h.alias('Nx', 'Ni')
    h.add(_.Unsigned('Nj', 4))
    h.alias('numberOfPointsAlongAMeridian', 'Nj')
    h.alias('Ny', 'Nj')
    h.alias('geography.Ni', 'Ni')
    h.alias('geography.Nj', 'Nj')
    h.add(_.Unsigned('basicAngleOfTheInitialProductionDomain', 4))
    h.add(
        _.Transient('mBasicAngle',
                    (_.Get('basicAngleOfTheInitialProductionDomain') *
                     _.Get('oneMillionConstant'))))
    h.add(_.Transient('angleMultiplier', 1))
    h.add(_.Transient('mAngleMultiplier', 1000000))
    pass  # when block
    h.add(_.Unsigned('subdivisionsOfBasicAngle', 4))
    h.add(_.Transient('angleDivisor', 1000000))
    pass  # when block
    h.add(_.Signed('latitudeOfFirstGridPoint', 4))
    h.alias('La1', 'latitudeOfFirstGridPoint')
    h.add(_.Signed('longitudeOfFirstGridPoint', 4))
    h.alias('Lo1', 'longitudeOfFirstGridPoint')
    h.add(
        _.Codeflag('resolutionAndComponentFlags', 1,
                   "grib2/tables/[tablesVersion]/3.3.table"))
    h.add(
        _.Bit('resolutionAndComponentFlags1',
              _.Get('resolutionAndComponentFlags'), 7))
    h.add(
        _.Bit('resolutionAndComponentFlags2',
              _.Get('resolutionAndComponentFlags'), 6))
    h.add(
        _.Bit('iDirectionIncrementGiven', _.Get('resolutionAndComponentFlags'),
              5))
    h.add(
        _.Bit('jDirectionIncrementGiven', _.Get('resolutionAndComponentFlags'),
              4))
    h.add(_.Bit('uvRelativeToGrid', _.Get('resolutionAndComponentFlags'), 3))
    h.add(
        _.Bit('resolutionAndComponentFlags6',
              _.Get('resolutionAndComponentFlags'), 7))
    h.add(
        _.Bit('resolutionAndComponentFlags7',
              _.Get('resolutionAndComponentFlags'), 6))
    h.add(
        _.Bit('resolutionAndComponentFlags8',
              _.Get('resolutionAndComponentFlags'), 6))

    def ijDirectionIncrementGiven_inline_concept(h):
        def wrapped(h):

            iDirectionIncrementGiven = h.get_l('iDirectionIncrementGiven')
            jDirectionIncrementGiven = h.get_l('jDirectionIncrementGiven')

            if iDirectionIncrementGiven == 1 and jDirectionIncrementGiven == 1:
                return 1

            if iDirectionIncrementGiven == 1 and jDirectionIncrementGiven == 0:
                return 0

            if iDirectionIncrementGiven == 0 and jDirectionIncrementGiven == 1:
                return 0

            if iDirectionIncrementGiven == 0 and jDirectionIncrementGiven == 0:
                return 0

        return wrapped

    h.add(
        _.Concept('ijDirectionIncrementGiven',
                  None,
                  concepts=ijDirectionIncrementGiven_inline_concept(h)))

    h.alias('DiGiven', 'iDirectionIncrementGiven')
    h.alias('DjGiven', 'jDirectionIncrementGiven')
    h.add(_.Signed('latitudeOfLastGridPoint', 4))
    h.alias('La2', 'latitudeOfLastGridPoint')
    h.add(_.Signed('longitudeOfLastGridPoint', 4))
    h.alias('Lo2', 'longitudeOfLastGridPoint')
    h.add(_.Unsigned('iDirectionIncrement', 4))
    h.alias('Di', 'iDirectionIncrement')
    h.add(_.Unsigned('N', 4))
    h.alias('numberOfParallelsBetweenAPoleAndTheEquator', 'N')
    h.alias('geography.N', 'N')
    h.add(
        _.Codeflag('scanningMode', 1,
                   "grib2/tables/[tablesVersion]/3.4.table"))
    h.add(_.Bit('iScansNegatively', _.Get('scanningMode'), 7))
    h.add(_.Bit('jScansPositively', _.Get('scanningMode'), 6))
    h.add(_.Bit('jPointsAreConsecutive', _.Get('scanningMode'), 5))
    h.add(_.Bit('alternativeRowScanning', _.Get('scanningMode'), 4))

    if h.get_l('jPointsAreConsecutive'):
        h.alias('numberOfRows', 'Ni')
        h.alias('numberOfColumns', 'Nj')
    else:
        h.alias('numberOfRows', 'Nj')
        h.alias('numberOfColumns', 'Ni')

    h.alias('geography.iScansNegatively', 'iScansNegatively')
    h.alias('geography.jScansPositively', 'jScansPositively')
    h.alias('geography.jPointsAreConsecutive', 'jPointsAreConsecutive')
    h.add(_.Transient('iScansPositively', _.Not(_.Get('iScansNegatively'))))
    h.add(_.Bit('scanningMode5', _.Get('scanningMode'), 3))
    h.add(_.Bit('scanningMode6', _.Get('scanningMode'), 2))
    h.add(_.Bit('scanningMode7', _.Get('scanningMode'), 1))
    h.add(_.Bit('scanningMode8', _.Get('scanningMode'), 0))
    h.add(
        _.Change_scanning_direction('swapScanningX', _.Get('values'),
                                    _.Get('Ni'), _.Get('Nj'),
                                    _.Get('iScansNegatively'),
                                    _.Get('jScansPositively'), _.Get('xFirst'),
                                    _.Get('xLast'), _.Get('x')))
    h.alias('swapScanningLon', 'swapScanningX')
    h.add(
        _.Change_scanning_direction('swapScanningY', _.Get('values'),
                                    _.Get('Ni'), _.Get('Nj'),
                                    _.Get('iScansNegatively'),
                                    _.Get('jScansPositively'), _.Get('yFirst'),
                                    _.Get('yLast'), _.Get('y')))
    h.alias('swapScanningLat', 'swapScanningY')
    h.add(
        _.G2grid('g2grid', _.Get('latitudeOfFirstGridPoint'),
                 _.Get('longitudeOfFirstGridPoint'),
                 _.Get('latitudeOfLastGridPoint'),
                 _.Get('longitudeOfLastGridPoint'),
                 _.Get('iDirectionIncrement'), None,
                 _.Get('basicAngleOfTheInitialProductionDomain'),
                 _.Get('subdivisionsOfBasicAngle')))
    h.add(_.G2latlon('latitudeOfFirstGridPointInDegrees', _.Get('g2grid'), 0))
    h.alias('geography.latitudeOfFirstGridPointInDegrees',
            'latitudeOfFirstGridPointInDegrees')
    h.add(_.G2latlon('longitudeOfFirstGridPointInDegrees', _.Get('g2grid'), 1))
    h.alias('geography.longitudeOfFirstGridPointInDegrees',
            'longitudeOfFirstGridPointInDegrees')
    h.add(_.G2latlon('latitudeOfLastGridPointInDegrees', _.Get('g2grid'), 2))
    h.alias('geography.latitudeOfLastGridPointInDegrees',
            'latitudeOfLastGridPointInDegrees')
    h.add(_.G2latlon('longitudeOfLastGridPointInDegrees', _.Get('g2grid'), 3))
    h.alias('geography.longitudeOfLastGridPointInDegrees',
            'longitudeOfLastGridPointInDegrees')
    h.add(
        _.G2latlon('iDirectionIncrementInDegrees', _.Get('g2grid'), 4,
                   _.Get('iDirectionIncrementGiven')))
    h.alias('geography.iDirectionIncrementInDegrees',
            'iDirectionIncrementInDegrees')
    h.add(
        _.Global_gaussian('global', _.Get('N'), _.Get('Ni'),
                          _.Get('iDirectionIncrement'),
                          _.Get('latitudeOfFirstGridPoint'),
                          _.Get('longitudeOfFirstGridPoint'),
                          _.Get('latitudeOfLastGridPoint'),
                          _.Get('longitudeOfLastGridPoint'),
                          _.Get('PLPresent'), _.Get('pl'),
                          _.Get('basicAngleOfTheInitialProductionDomain'),
                          _.Get('subdivisionsOfBasicAngle')))
    h.alias('xFirst', 'longitudeOfFirstGridPointInDegrees')
    h.alias('yFirst', 'latitudeOfFirstGridPointInDegrees')
    h.alias('xLast', 'longitudeOfLastGridPointInDegrees')
    h.alias('yLast', 'latitudeOfLastGridPointInDegrees')
    h.alias('latitudeFirstInDegrees', 'latitudeOfFirstGridPointInDegrees')
    h.alias('longitudeFirstInDegrees', 'longitudeOfFirstGridPointInDegrees')
    h.alias('latitudeLastInDegrees', 'latitudeOfLastGridPointInDegrees')
    h.alias('longitudeLastInDegrees', 'longitudeOfLastGridPointInDegrees')
    h.alias('DiInDegrees', 'iDirectionIncrementInDegrees')

    if (h._missing('Ni') and (h.get_l('PLPresent') == 1)):
        h.add(
            _.Iterator('ITERATOR', _.Get('gaussian_reduced'),
                       _.Get('numberOfPoints'), _.Get('missingValue'),
                       _.Get('values'),
                       _.Get('latitudeOfFirstGridPointInDegrees'),
                       _.Get('longitudeOfFirstGridPointInDegrees'),
                       _.Get('latitudeOfLastGridPointInDegrees'),
                       _.Get('longitudeOfLastGridPointInDegrees'), _.Get('N'),
                       _.Get('pl'), _.Get('Nj')))
        h.add(
            _.Nearest('NEAREST', _.Get('reduced'), _.Get('values'),
                      _.Get('radius'), _.Get('Nj'), _.Get('pl')))
    else:
        h.add(
            _.Iterator('ITERATOR', _.Get('gaussian'), _.Get('numberOfPoints'),
                       _.Get('missingValue'), _.Get('values'),
                       _.Get('longitudeFirstInDegrees'), _.Get('DiInDegrees'),
                       _.Get('Ni'), _.Get('Nj'), _.Get('iScansNegatively'),
                       _.Get('latitudeFirstInDegrees'),
                       _.Get('latitudeLastInDegrees'), _.Get('N'),
                       _.Get('jScansPositively')))
        h.add(
            _.Nearest('NEAREST', _.Get('regular'), _.Get('values'),
                      _.Get('radius'), _.Get('Ni'), _.Get('Nj')))

    h.add(_.Latlonvalues('latLonValues', _.Get('values')))
    h.alias('latitudeLongitudeValues', 'latLonValues')
    h.add(_.Latitudes('latitudes', _.Get('values'), 0))
    h.add(_.Longitudes('longitudes', _.Get('values'), 0))
    h.add(_.Latitudes('distinctLatitudes', _.Get('values'), 1))
    h.add(_.Longitudes('distinctLongitudes', _.Get('values'), 1))
    h.add(
        _.Octahedral_gaussian('isOctahedral', _.Get('N'), _.Get('Ni'),
                              _.Get('PLPresent'), _.Get('pl')))
    h.add(
        _.Gaussian_grid_name('gaussianGridName', _.Get('N'), _.Get('Ni'),
                             _.Get('isOctahedral')))
    h.alias('gridName', 'gaussianGridName')
    h.add(
        _.Number_of_points_gaussian(
            'numberOfDataPointsExpected', _.Get('Ni'), _.Get('Nj'),
            _.Get('PLPresent'), _.Get('pl'), _.Get('N'),
            _.Get('latitudeOfFirstGridPointInDegrees'),
            _.Get('longitudeOfFirstGridPointInDegrees'),
            _.Get('latitudeOfLastGridPointInDegrees'),
            _.Get('longitudeOfLastGridPointInDegrees'), _.Get('zero')))
    h.add(
        _.Evaluate('legacyGaussSubarea',
                   (_.Get('numberOfDataPoints') !=
                    _.Get('numberOfDataPointsExpected'))))
    h.add(_.Signed('latitudeOfThePoleOfStretching', 4))
    h.add(_.Signed('longitudeOfThePoleOfStretching', 4))
    h.add(
        _.Scale('latitudeOfStretchingPoleInDegrees',
                _.Get('latitudeOfThePoleOfStretching'), _.Get('oneConstant'),
                _.Get('grib2divider'), _.Get('truncateDegrees')))
    h.alias('geography.latitudeOfStretchingPoleInDegrees',
            'latitudeOfStretchingPoleInDegrees')
    h.add(
        _.Scale('longitudeOfStretchingPoleInDegrees',
                _.Get('longitudeOfThePoleOfStretching'), _.Get('oneConstant'),
                _.Get('grib2divider'), _.Get('truncateDegrees')))
    h.alias('geography.longitudeOfStretchingPoleInDegrees',
            'longitudeOfStretchingPoleInDegrees')
    h.add(_.Unsigned('stretchingFactorScaled', 4))
    h.add(
        _.Scale('stretchingFactor', _.Get('stretchingFactorScaled'),
                _.Get('oneConstant'), _.Get('grib2divider')))
    h.alias('geography.stretchingFactor', 'stretchingFactor')
Esempio n. 21
0
def load(h):

    h.add(_.Codetable('suiteName', 2, "grib2/tigge_suiteName.table"))
    h.alias('tiggeSuiteID', 'suiteName')