Esempio n. 1
0
    def v_positions_history(self, end=yesterdaydash(), rendered=True):
        """
        river chart visulization of positions ratio history
        use text size to avoid legend overlap in some sense, eg. legend_text_size=8
        """
        start = self.totcftable.iloc[0].date
        times = pd.date_range(start, end)
        tdata = []
        for date in times:
            sdata = sorted(
                [(
                    date,
                    fob.briefdailyreport(date).get("currentvalue", 0),
                    fob.name,
                ) for fob in self.fundtradeobj],
                key=lambda x: x[1],
                reverse=True,
            )
            tdata.extend(sdata)

        tr = ThemeRiver()
        tr.add(
            series_name=[foj.name for foj in self.fundtradeobj],
            data=tdata,
            label_opts=opts.LabelOpts(is_show=False),
            singleaxis_opts=opts.SingleAxisOpts(type_="time",
                                                pos_bottom="10%"),
        )
        if rendered:
            return tr.render_notebook()
        else:
            return tr
Esempio n. 2
0
 def v_positions_history(self, end=yesterdaydash(), **vkwds):
     '''
     river chart visulization of positions ratio history
     use text size to avoid legend overlap in some sense, eg. legend_text_size=8
     '''
     start = self.totcftable.iloc[0].date
     times = pd.date_range(start, end)
     tdata = []
     for date in times:
         sdata = sorted([(date, fob.briefdailyreport(date).get('currentvalue', 0), fob.aim.name)
                         for fob in self.fundtradeobj], key=lambda x: x[1], reverse=True)
         tdata.extend(sdata)
     tr = ThemeRiver()
     tr.add([foj.aim.name for foj in self.fundtradeobj], tdata, is_datazoom_show=True,
            is_label_show=False, legend_top="0%", legend_orient='horizontal', **vkwds)
     return tr
Esempio n. 3
0
    with open("news_top_title.json", "r") as f:
        top_titles = json.load(f)[topic]

    with open("news_emotion_count.json", "r") as f:
        news_ec = json.load(f)
    emotions = ["负面", "中性", "正面"]

    with open("cov_cnt.json", "r") as f:
        cc_data = json.load(f)

    theme_river = ThemeRiver(
        init_opts=opts.InitOpts(width="1200px", height="600px"))
    theme_river.add(
        series_name=tr_series[topic],
        data=tr_data[topic],
        label_opts=opts.LabelOpts(is_show=False),
        singleaxis_opts=opts.SingleAxisOpts(pos_top="50",
                                            pos_bottom="50",
                                            type_="time"),
    )
    theme_river.set_global_opts(tooltip_opts=opts.TooltipOpts(
        trigger="axis", axis_pointer_type="line"),
                                legend_opts=opts.LegendOpts(pos_top="5%",
                                                            is_show=True))

    wc_tl = Timeline(init_opts=opts.InitOpts(width="1200px", height="600px"))
    idx = 0
    for date, tmp_data in wc_data:
        wc = WordCloud()
        wc.add(series_name="", data_pair=tmp_data)
        wc.set_global_opts(
            title_opts=opts.TitleOpts(title="词频统计",
Esempio n. 4
0
        dim=7,
        name="等级",
        type_="category",
        data=["优", "良", "轻度污染", "中度污染", "重度污染", "严重污染"],
    ),
]
parallel = Parallel()
# 添加坐标轴和数据
parallel.add_schema(schema=schema).add("", data)
parallel.render_notebook()

# %% [markdown]
# ### Radar -- 雷达图

radar = Radar()
radar.add_schema(schema=[
    opts.RadarIndicatorItem(name=_k, max_=200) for _k in list("ABCDFG")
])
radar.add("Expectation", [Faker.values()]).add("Reality", [Faker.values()])
radar.render_notebook()

# %% [markdown]
# ### ThemeRiver -- 流量图

themeriver = ThemeRiver()
with open("data/themeriver.json") as j:
    data = json.load(j)
cats = list(set([i[-1] for i in data]))
themeriver.add(cats, data, singleaxis_opts=opts.SingleAxisOpts(type_="time"))
themeriver.render_notebook()
Esempio n. 5
0
                            columns=['year'],
                            index=df_year['year'].unique())
    df_river['year'] = df_river['year'].apply(str)
    df_river['count'] = df_year[df_year[g] == 1].groupby(by=['year'])[g].sum()
    df_river['genre'] = np.full(len(df_river), g)
    df_river['count'] = df_river['count'].fillna(0)

    data_river.extend(df_river.values.tolist())

river = ThemeRiver(init_opts=opts.InitOpts(
    width="2000px", height="600px", theme=ThemeType.LIGHT))
river.add(
    series_name=genres,
    data=data_river,
    label_opts=opts.LabelOpts(font_size=10),
    singleaxis_opts=opts.SingleAxisOpts(
        pos_top="50",
        pos_bottom="50",
        type_="time",
    ),
)
river.set_global_opts(
    tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="line"),
    title_opts=opts.TitleOpts(title="1901-2020 曲風流變",
                              subtitle="1901-2020",
                              pos_bottom="85%",
                              pos_right="80%"),
)
river.set_series_opts(label_opts=opts.LabelOpts(is_show=0))

# themeriver().load_javascript()
river.render_notebook()