Esempio n. 1
0
def main(args):
    img = ecvl.ImRead(args.in_img)
    augs = ecvl.SequentialAugmentationContainer([
        ecvl.AugRotate([-5, 5]),
        ecvl.AugMirror(.5),
        ecvl.AugFlip(.5),
        ecvl.AugGammaContrast([3, 5]),
        ecvl.AugAdditiveLaplaceNoise([0, 0.2 * 255]),
        ecvl.AugCoarseDropout([0, 0.55], [0.02, 0.1], 0.5),
        ecvl.AugAdditivePoissonNoise([0, 40]),
        ecvl.AugResizeDim([500, 500]),
    ])
    ecvl.AugmentationParam.SetSeed(0)
    augs.Apply(img)
    print("Executing ImageToTensor")
    t = ecvl.ImageToTensor(img)
    t.div_(128)
    t.mult_(128)
    print("Executing TensorToImage")
    img = ecvl.TensorToImage(t)
    print("Executing TensorToView")
    ecvl.TensorToView(t)

    _ = ecvl.AugmentationFactory.create(AUG_TXT)

    training_augs = ecvl.SequentialAugmentationContainer([
        ecvl.AugRotate([-5, 5]),
        ecvl.AugAdditiveLaplaceNoise([0, 0.2 * 255]),
        ecvl.AugCoarseDropout([0, 0.55], [0.02, 0.1], 0),
        ecvl.AugAdditivePoissonNoise([0, 40]),
        ecvl.AugResizeDim([30, 30]),
    ])
    test_augs = ecvl.SequentialAugmentationContainer([
        ecvl.AugResizeDim([30, 30]),
    ])
    ds_augs = ecvl.DatasetAugmentations([training_augs, None, test_augs])

    batch_size = 64
    print("Creating a DLDataset")
    d = ecvl.DLDataset(args.in_ds, batch_size, ds_augs, ecvl.ColorType.GRAY)
    print("Create x and y")
    x = Tensor(
        [batch_size, d.n_channels_, d.resize_dims_[0], d.resize_dims_[1]])
    y = Tensor([batch_size, len(d.classes_)])

    # Load a batch of d.batch_size_ images into x and corresponding labels
    # into y. Images are resized to the dimensions specified in the
    # augmentations chain
    print("Executing LoadBatch on training set")
    d.LoadBatch(x, y)

    # Change colortype and channels
    img = ecvl.TensorToImage(x)
    img.colortype_ = ecvl.ColorType.GRAY
    img.channels_ = "xyc"

    # Switch to Test split and load a batch of images
    print("Executing LoadBatch on test set")
    d.SetSplit(ecvl.SplitType.test)
    d.LoadBatch(x, y)
Esempio n. 2
0
def read_slide(slide_fn, level=4):
    levels = ecvl.OpenSlideGetLevels(slide_fn)
    dims = [0, 0] + levels[level]
    img = ecvl.OpenSlideRead(slide_fn, level, dims)
    t = ecvl.ImageToTensor(img)
    t_np = t.getdata()
    s = t_np.shape
    t_np = t_np.transpose((1, 2, 0)).reshape(
        (s[1] * s[2], 3))  # Channel last and reshape
    t_eval = Tensor.fromarray(t_np)
    print(t_eval.getShape())
    return t_eval, s
Esempio n. 3
0
    def get_mask_tissue_from_slide(self,
                                   slide_fn,
                                   level=2,
                                   use_openslide=False):

        if use_openslide and not no_openslide:
            # Using open slide
            slide = openslide.open_slide(slide_fn)
            dims = slide.level_dimensions
            ds = [int(i) for i in slide.level_downsamples]

            x0 = 0
            y0 = 0
            x1 = dims[0][0]
            y1 = dims[0][1]

            delta_x = x1 - x0
            delta_y = y1 - y0

            pil_img = slide.read_region(location=(x0, y0),
                                        level=level,
                                        size=(delta_x // ds[level],
                                              delta_y // ds[level]))
            np_img = np.array(pil_img)

            msk_pred = self.get_tissue_mask(np_img,
                                            channel_first=False,
                                            BGR=False)
        else:
            ## Using ECVL
            levels = ecvl.OpenSlideGetLevels(slide_fn)
            dims = [0, 0] + levels[level]
            img = ecvl.OpenSlideRead(slide_fn, level, dims)
            t = ecvl.ImageToTensor(img)
            np_img = t.getdata(
            )  # Tensor to numpy array (ecvl read images with channel first)

            msk_pred = self.get_tissue_mask(np_img,
                                            channel_first=True,
                                            BGR=True)

        return msk_pred
Esempio n. 4
0
def main(args):
    if not ecvl.ECVL_EDDL:
        print("No EDDL support - quitting")
        sys.exit(0)
    img = ecvl.ImRead(args.in_img)
    augs = ecvl.SequentialAugmentationContainer([
        ecvl.AugCenterCrop(),  # Make image square
        ecvl.AugRotate([-5, 5]),
        ecvl.AugMirror(.5),
        ecvl.AugFlip(.5),
        ecvl.AugGammaContrast([3, 5]),
        ecvl.AugAdditiveLaplaceNoise([0, 0.2 * 255]),
        ecvl.AugCoarseDropout([0, 0.55], [0.02, 0.1], 0.5),
        ecvl.AugAdditivePoissonNoise([0, 40]),
        ecvl.AugResizeDim([500, 500]),
        ecvl.AugCenterCrop([224, 224]),
        ecvl.AugToFloat32(255),
        ecvl.AugNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ])
    ecvl.AugmentationParam.SetSeed(0)
    print("Applying augmentations")
    augs.Apply(img)
    print("Executing ImageToTensor")
    t = ecvl.ImageToTensor(img)
    t.div_(128)
    t.mult_(128)
    print("Executing TensorToImage")
    img = ecvl.TensorToImage(t)
    print("Executing TensorToView")
    ecvl.TensorToView(t)

    print("Applying augmentations (from text)")
    newdeal_augs = ecvl.AugmentationFactory.create(AUG_TXT)
    newdeal_augs.Apply(img)

    training_augs = ecvl.SequentialAugmentationContainer([
        ecvl.AugRotate([-5, 5]),
        ecvl.AugAdditiveLaplaceNoise([0, 0.2 * 255]),
        ecvl.AugCoarseDropout([0, 0.55], [0.02, 0.1], 0),
        ecvl.AugAdditivePoissonNoise([0, 40]),
        ecvl.AugResizeDim([30, 30]),
        ecvl.AugToFloat32(255),
        ecvl.AugNormalize(0.449, 0.226),  # mean of imagenet stats
    ])
    test_augs = ecvl.SequentialAugmentationContainer([
        ecvl.AugResizeDim([30, 30]),
        ecvl.AugToFloat32(255),
        ecvl.AugNormalize(0.449, 0.226),  # mean of imagenet stats
    ])
    # number of augmentation containers must match number of dataset splits
    ds_augs = ecvl.DatasetAugmentations([training_augs, test_augs])

    batch_size = 64
    print("Creating a DLDataset")
    d = ecvl.DLDataset(args.in_ds, batch_size, ds_augs, ecvl.ColorType.GRAY)
    print("Create x and y")
    x = Tensor(
        [batch_size, d.n_channels_, d.resize_dims_[0], d.resize_dims_[1]])
    y = Tensor([batch_size, len(d.classes_)])

    # Load a batch of d.batch_size_ images into x and corresponding labels
    # into y. Images are resized to the dimensions specified in the
    # augmentations chain
    print("Executing LoadBatch on training set")
    d.LoadBatch(x, y)

    # Change colortype and channels
    img = ecvl.TensorToImage(x)
    img.colortype_ = ecvl.ColorType.GRAY
    img.channels_ = "xyc"

    # Switch to Test split and load a batch of images
    print("Executing LoadBatch on test set")
    d.SetSplit(ecvl.SplitType.test)
    d.LoadBatch(x, y)

    # Save some input images
    ecvl.ImWrite("mnist_batch.png", ecvl.MakeGrid(x, 8, False))
    ecvl.ImWrite("mnist_batch_normalized.png", ecvl.MakeGrid(x, 8, True))
Esempio n. 5
0
def PneumothoraxLoadBatch(d, black_indices, m_i, b_i):
    mask_indices = d.GetSplit()
    len_mask_indices = len(mask_indices)
    bs = d.batch_size_
    names = []
    images = []
    labels = []

    if d.current_split_ == ecvl.SplitType.training:
        index = 0
    elif d.current_split_ == ecvl.SplitType.validation:
        index = 1
    else:
        index = 2

    start = d.current_batch_[index] * bs
    d.current_batch_ = [
        elem + 1 if i == index else elem
        for i, elem in enumerate(d.current_batch_)
    ]

    expr = True
    for i in range(start, start + bs):
        if d.current_split_ == ecvl.SplitType.training:
            # in training, check if you can take
            # other black ground truth images..
            if len_mask_indices * 1.25 - i > len_mask_indices - m_i:
                expr = random.random() >= 0.2 and m_i < len_mask_indices
            # ..otherwise, you have to take a ground truth with mask
        else:
            # in validation, first take all the samples with the ground
            # truth with mask and then all those with the black ground truth.
            expr = m_i < len_mask_indices

        if expr:
            index = mask_indices[m_i]
            m_i += 1
        else:
            index = black_indices[b_i]
            b_i += 1
        # insert the original name of images and ground truth in case
        # you want to save predictions during validation
        elem = d.samples_[index]
        names.append(elem.location_[0])
        names.append(elem.label_path_)

        # Read the image
        img = elem.LoadImage(d.ctype_, False)

        # Read the ground truth
        gt = elem.LoadImage(d.ctype_gt_, True)

        # Apply chain of augmentations to sample image
        # and corresponding ground truth
        d.augs_.Apply(d.current_split_, img, gt)

        # Copy image into tensor (images)
        images.append(ecvl.ImageToTensor(img))

        # Copy label into tensor (labels)
        labels.append(ecvl.ImageToTensor(gt))

    return d, images, labels, names, m_i, b_i