Esempio n. 1
0
def main(args):
    log = logging.getLogger('root')
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))

    if args.input.endswith(".cs"):
        log.debug("Detected CryoSPARC 2+ .cs file")
        cs = np.load(args.input)
        try:
            df = metadata.parse_cryosparc_2_cs(cs,
                                               passthrough=args.passthrough,
                                               minphic=args.minphic)
        except (KeyError, ValueError) as e:
            log.error(e.message)
            log.error(
                "A passthrough file may be required (check inside the cryoSPARC 2+ job directory)"
            )
            log.debug(e, exc_info=True)
            return 1
    else:
        log.debug("Detected CryoSPARC 0.6.5 .csv file")
        meta = metadata.parse_cryosparc_065_csv(
            args.input)  # Read cryosparc metadata file.
        df = metadata.cryosparc_065_csv2star(meta, args.minphic)

    if args.cls is not None:
        df = star.select_classes(df, args.cls)

    if args.copy_micrograph_coordinates is not None:
        coord_star = pd.concat(
            (star.parse_star(inp, keep_index=False)
             for inp in glob(args.copy_micrograph_coordinates)),
            join="inner")
        star.augment_star_ucsf(coord_star)
        star.augment_star_ucsf(df)
        key = star.merge_key(df, coord_star)
        log.debug("Coordinates merge key: %s" % key)
        if args.cached or key == star.Relion.IMAGE_NAME:
            fields = star.Relion.MICROGRAPH_COORDS
        else:
            fields = star.Relion.MICROGRAPH_COORDS + [
                star.UCSF.IMAGE_INDEX, star.UCSF.IMAGE_PATH
            ]
        df = star.smart_merge(df, coord_star, fields=fields, key=key)
        star.simplify_star_ucsf(df)

    if args.micrograph_path is not None:
        df = star.replace_micrograph_path(df,
                                          args.micrograph_path,
                                          inplace=True)

    if args.transform is not None:
        r = np.array(json.loads(args.transform))
        df = star.transform_star(df, r, inplace=True)

    # Write Relion .star file with correct headers.
    star.write_star(args.output, df, reindex=True)
    log.info("Output fields: %s" % ", ".join(df.columns))
    return 0
Esempio n. 2
0
def main(args):
    log = logging.getLogger('root')
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))

    dfs = [metadata.parse_fx_par(fn) for fn in args.input]
    n = dfs[0].shape[0]
    if not np.all(np.array([df.shape[0] for df in dfs]) == n):
        log.error("Input files are not aligned!")
        return 1
    df = pd.concat(dfs, axis=0, ignore_index=True)
    df["CLASS"] = np.repeat(np.arange(1, len(dfs) + 1), n)

    if args.min_occ:
        df = df[df["OCC"] >= args.min_occ]

    df = df.sort_values(by="OCC")
    df = df.drop_duplicates("C", keep="last")
    df = df.sort_values(by="C")

    df = metadata.par2star(df,
                           data_path=args.stack,
                           apix=args.apix,
                           cs=args.cs,
                           ac=args.ac,
                           kv=args.voltage,
                           invert_eulers=args.relion)

    if args.cls is not None:
        df = star.select_classes(df, args.cls)

    star.write_star(args.output, df, reindex=True)
    return 0
Esempio n. 3
0
def main(args):
    log = logging.getLogger('root')
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))

    if args.input[0].endswith(".cs"):
        log.debug("Detected CryoSPARC 2+ .cs file")
        cs = np.load(args.input[0])
        try:
            df = metadata.parse_cryosparc_2_cs(cs, passthroughs=args.input[1:], minphic=args.minphic,
                                               boxsize=args.boxsize, swapxy=args.swapxy,
                                               invertx=args.invertx, inverty=args.inverty)
        except (KeyError, ValueError) as e:
            log.error(e, exc_info=True)
            log.error("Required fields could not be mapped. Are you using the right input file(s)?")
            return 1
    else:
        log.debug("Detected CryoSPARC 0.6.5 .csv file")
        if len(args.input) > 1:
            log.error("Only one file at a time supported for CryoSPARC 0.6.5 .csv format")
            return 1
        meta = metadata.parse_cryosparc_065_csv(args.input[0])  # Read cryosparc metadata file.
        df = metadata.cryosparc_065_csv2star(meta, args.minphic)

    if args.cls is not None:
        df = star.select_classes(df, args.cls)

    if args.copy_micrograph_coordinates is not None:
        df = star.augment_star_ucsf(df, inplace=True)
        coord_star = pd.concat(
            (star.parse_star(inp, keep_index=False, augment=True) for inp in
             glob(args.copy_micrograph_coordinates)), join="inner")
        key = star.merge_key(df, coord_star)
        log.debug("Coordinates merge key: %s" % key)
        if args.cached or key == star.Relion.IMAGE_NAME:
            fields = star.Relion.MICROGRAPH_COORDS
        else:
            fields = star.Relion.MICROGRAPH_COORDS + [star.UCSF.IMAGE_INDEX, star.UCSF.IMAGE_PATH]
        df = star.smart_merge(df, coord_star, fields=fields, key=key)
        star.simplify_star_ucsf(df)

    if args.micrograph_path is not None:
        df = star.replace_micrograph_path(df, args.micrograph_path, inplace=True)

    if args.transform is not None:
        r = np.array(json.loads(args.transform))
        df = star.transform_star(df, r, inplace=True)

    df = star.check_defaults(df, inplace=True)

    if args.relion2:
        df = star.remove_new_relion31(df, inplace=True)
        star.write_star(args.output, df, resort_records=True, optics=False)
    else:
        df = star.remove_deprecated_relion2(df, inplace=True)
        star.write_star(args.output, df, resort_records=True, optics=True)

    log.info("Output fields: %s" % ", ".join(df.columns))
    return 0
Esempio n. 4
0
def main(args):
    log = logging.getLogger('root')
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))
    if args.boxsize is None:
        log.error("Please specify box size")
        return 1
    df = star.parse_star(args.input, keep_index=False)
    if args.cls is not None:
        df = star.select_classes(df, args.cls)
    if args.apix is None:
        args.apix = star.calculate_apix(df)
    nside = 2**args.healpix_order
    angular_sampling = np.sqrt(3 / np.pi) * 60 / nside
    theta, phi = pix2ang(nside, np.arange(12 * nside**2))
    phi = np.pi - phi
    hp = np.column_stack((np.sin(theta) * np.cos(phi),
                          np.sin(theta) * np.sin(phi), np.cos(theta)))
    kdtree = cKDTree(hp)
    st = np.sin(np.deg2rad(df[star.Relion.ANGLETILT]))
    ct = np.cos(np.deg2rad(df[star.Relion.ANGLETILT]))
    sp = np.sin(np.deg2rad(df[star.Relion.ANGLEROT]))
    cp = np.cos(np.deg2rad(df[star.Relion.ANGLEROT]))
    ptcls = np.column_stack((st * cp, st * sp, ct))
    _, idx = kdtree.query(ptcls)
    cnts = np.bincount(idx, minlength=theta.size)
    frac = cnts / np.max(cnts).astype(np.float64)
    mu = np.mean(frac)
    sigma = np.std(frac)
    color_scale = (frac - mu) / sigma
    color_scale[color_scale > 5] = 5
    color_scale[color_scale < -1] = -1
    color_scale /= 6
    color_scale += 1 / 6.
    r = args.boxsize * args.apix / 2
    rp = np.reshape(r + r * frac * args.height_scale, (-1, 1))
    base1 = hp * r
    base2 = hp * rp
    base1 = base1[:, [0, 1, 2]] + np.array([r] * 3)
    base2 = base2[:, [0, 1, 2]] + np.array([r] * 3)
    height = np.squeeze(np.abs(rp - r))
    idx = np.where(height >= 0.01)[0]
    width = args.width_scale * np.pi * r * angular_sampling / 360
    bild = np.hstack((base1, base2, np.ones((base1.shape[0], 1)) * width))
    fmt_color = ".color %f 0 %f\n"
    fmt_cyl = ".cylinder %f %f %f %f %f %f %f\n"
    with open(args.output, "w") as f:
        for i in idx:
            f.write(fmt_color % (color_scale[i], 1 - color_scale[i]))
            f.write(fmt_cyl % tuple(bild[i]))
    return 0
Esempio n. 5
0
def main(args):
    if args.input.endswith(".cs"):
        cs = np.load(args.input)
        if args.passthrough is None:
            if u"blob/path" not in cs.dtype.names:
                print(
                    "A passthrough file is required (found inside the cryoSPARC 2+ job directory)"
                )
                return 1
        df = metadata.parse_cryosparc_2_cs(cs,
                                           passthrough=args.passthrough,
                                           minphic=args.minphic)
    else:
        meta = metadata.parse_cryosparc_065_csv(
            args.input)  # Read cryosparc metadata file.
        df = metadata.cryosparc_065_csv2star(meta, args.minphic)

    if args.cls is not None:
        df = star.select_classes(df, args.cls)

    if args.copy_micrograph_coordinates is not None:
        coord_star = pd.concat(
            (star.parse_star(inp, keep_index=False)
             for inp in glob(args.copy_micrograph_coordinates)),
            join="inner")
        df = star.smart_merge(df,
                              coord_star,
                              fields=star.Relion.MICROGRAPH_COORDS)

    if args.transform is not None:
        r = np.array(json.loads(args.transform))
        df = star.transform_star(df, r, inplace=True)

    # Write Relion .star file with correct headers.
    star.write_star(args.output, df, reindex=True)
    return 0
Esempio n. 6
0
def main(args):
    meta = parse_metadata(args.input)  # Read cryosparc metadata file.
    meta["data_input_idx"] = [
        "%.6d" % (i + 1) for i in meta["data_input_idx"]
    ]  # Reformat particle idx for Relion.

    if "data_input_relpath" not in meta.columns:
        if args.data_path is None:
            print(
                "Data path missing, use --data-path to specify particle stack path"
            )
            return 1
        meta["data_input_relpath"] = args.data_path

    meta["data_input_relpath"] = meta["data_input_idx"].str.cat(
        meta["data_input_relpath"], sep="@")  # Construct _rlnImageName field.
    # Take care of trivial mappings.
    rlnheaders = [
        general[h] for h in meta.columns
        if h in general and general[h] is not None
    ]
    star = meta[[
        h for h in meta.columns if h in general and general[h] is not None
    ]].copy()
    star.columns = rlnheaders

    if "rlnRandomSubset" in star.columns:
        star["rlnRandomSubset"] = star["rlnRandomSubset"].apply(
            lambda x: ord(x) - 64)

    if "rlnPhaseShift" in star.columns:
        star["rlnPhaseShift"] = np.rad2deg(star["rlnPhaseShift"])

    # general class assignments and other model parameters.
    phic = meta[[h for h in meta.columns if "phiC" in h
                 ]]  # Posterior probability over class assignments.
    if len(phic.columns) > 0:  # Check class assignments exist in input.
        # phic.columns = [int(h[21]) for h in meta.columns if "phiC" in h]
        phic.columns = range(len(phic.columns))
        cls = phic.idxmax(axis=1)
        for p in model:
            if model[p] is not None:
                pspec = p.split("model")[1]
                param = meta[[h for h in meta.columns if pspec in h]]
                if len(param.columns) > 0:
                    param.columns = phic.columns
                    star[model[p]] = param.lookup(param.index, cls)
        star[
            "rlnClassNumber"] = cls + 1  # Compute most probable classes and add one for Relion indexing.
    else:
        for p in model:
            if model[p] is not None and p in meta.columns:
                star[model[p]] = meta[p]
        star["rlnClassNumber"] = 1

    if args.cls is not None:
        star = select_classes(star, args.cls)

    # Convert axis-angle representation to Euler angles (degrees).
    if star.columns.intersection(angles).size == len(angles):
        star[angles] = np.rad2deg(star[angles].apply(
            lambda x: rot2euler(expmap(x)), axis=1, raw=True, broadcast=True))

    if args.minphic is not None:
        mask = np.all(phic < args.minphic, axis=1)
        if args.drop_bad:
            star.drop(star[mask].index,
                      inplace=True)  # Delete low-confidence particles.
        else:
            star.loc[
                mask,
                "rlnClassNumber"] = 0  # Set low-confidence particles to dummy class.

    if args.transform is not None:
        r = np.array(json.loads(args.transform))
        star = transform_star(star, r, inplace=True)

    # Write Relion .star file with correct headers.
    write_star(args.output, star, reindex=True)
    return 0
Esempio n. 7
0
def main(args):
    log = logging.getLogger(__name__)
    log.setLevel(logging.INFO)
    hdlr = logging.StreamHandler(sys.stdout)
    if args.quiet:
        hdlr.setLevel(logging.WARNING)
    else:
        hdlr.setLevel(logging.INFO)
    log.addHandler(hdlr)

    if args.target is None and args.sym is None:
        log.error(
            "At least a target or symmetry group must be provided via --target or --sym"
        )
        return 1
    elif args.target is not None and args.boxsize is None and args.origin is None:
        log.error("An origin must be provided via --boxsize or --origin")
        return 1

    if args.target is not None:
        try:
            args.target = np.array(
                [np.double(tok) for tok in args.target.split(",")])
        except:
            log.error(
                "Target must be comma-separated list of x,y,z coordinates")
            return 1

    if args.origin is not None:
        if args.boxsize is not None:
            log.warn("--origin supersedes --boxsize")
        try:
            args.origin = np.array(
                [np.double(tok) for tok in args.origin.split(",")])
        except:
            log.error(
                "Origin must be comma-separated list of x,y,z coordinates")
            return 1

    if args.sym is not None:
        args.sym = util.relion_symmetry_group(args.sym)

    df = star.parse_star(args.input)

    if args.apix is None:
        args.apix = star.calculate_apix(df)
        if args.apix is None:
            log.warn(
                "Could not compute pixel size, default is 1.0 Angstroms per pixel"
            )
            args.apix = 1.0
            df[star.Relion.MAGNIFICATION] = 10000
            df[star.DETECTORPIXELSIZE] = 1.0

    if args.cls is not None:
        df = star.select_classes(df, args.cls)

    if args.target is not None:
        if args.origin is not None:
            args.origin /= args.apix
        elif args.boxsize is not None:
            args.origin = np.ones(3) * args.boxsize / 2
        args.target /= args.apix
        c = args.target - args.origin
        c = np.where(np.abs(c) < 1, 0, c)  # Ignore very small coordinates.
        d = np.linalg.norm(c)
        ax = c / d
        cm = util.euler2rot(*np.array(
            [np.arctan2(ax[1], ax[0]),
             np.arccos(ax[2]),
             np.deg2rad(args.psi)]))
        ops = [op.dot(cm) for op in args.sym] if args.sym is not None else [cm]
        dfs = [
            star.transform_star(df,
                                op.T,
                                -d,
                                rotate=args.shift_only,
                                invert=args.target_invert,
                                adjust_defocus=args.adjust_defocus)
            for op in ops
        ]
    elif args.sym is not None:
        dfs = list(
            subparticle_expansion(df, args.sym,
                                  -args.displacement / args.apix))
    else:
        log.error(
            "At least a target or symmetry group must be provided via --target or --sym"
        )
        return 1

    if args.recenter:
        for s in dfs:
            star.recenter(s, inplace=True)

    if args.suffix is None and not args.skip_join:
        if len(dfs) > 1:
            df = util.interleave(dfs)
        else:
            df = dfs[0]
        star.write_star(args.output, df)
    else:
        for i, s in enumerate(dfs):
            star.write_star(os.path.join(args.output, args.suffix + "_%d" % i),
                            s)
    return 0
Esempio n. 8
0
def main(args):
    if args.info:
        args.input.append(args.output)

    df = pd.concat(
        (star.parse_star(inp, augment=args.augment) for inp in args.input),
        join="inner")

    dfaux = None

    if args.cls is not None:
        df = star.select_classes(df, args.cls)

    if args.info:
        if star.is_particle_star(df) and star.Relion.CLASS in df.columns:
            c = df[star.Relion.CLASS].value_counts()
            print("%s particles in %d classes" %
                  ("{:,}".format(df.shape[0]), len(c)))
            print("    ".join([
                '%d: %s (%.2f %%)' % (i, "{:,}".format(s), 100. * s / c.sum())
                for i, s in iteritems(c.sort_index())
            ]))
        elif star.is_particle_star(df):
            print("%s particles" % "{:,}".format(df.shape[0]))
        if star.Relion.MICROGRAPH_NAME in df.columns:
            mgraphcnt = df[star.Relion.MICROGRAPH_NAME].value_counts()
            print(
                "%s micrographs, %s +/- %s particles per micrograph" %
                ("{:,}".format(len(mgraphcnt)), "{:,.3f}".format(
                    np.mean(mgraphcnt)), "{:,.3f}".format(np.std(mgraphcnt))))
        try:
            print("%f A/px (%sX magnification)" %
                  (star.calculate_apix(df), "{:,.0f}".format(
                      df[star.Relion.MAGNIFICATION][0])))
        except KeyError:
            pass
        if len(df.columns.intersection(star.Relion.ORIGINS3D)) > 0:
            print("Largest shift is %f pixels" % np.max(
                np.abs(df[df.columns.intersection(
                    star.Relion.ORIGINS3D)].values)))
        return 0

    if args.drop_angles:
        df.drop(star.Relion.ANGLES, axis=1, inplace=True, errors="ignore")

    if args.drop_containing is not None:
        containing_fields = [
            f for q in args.drop_containing for f in df.columns if q in f
        ]
        if args.invert:
            containing_fields = df.columns.difference(containing_fields)
        df.drop(containing_fields, axis=1, inplace=True, errors="ignore")

    if args.offset_group is not None:
        df[star.Relion.GROUPNUMBER] += args.offset_group

    if args.restack is not None:
        if not args.augment:
            star.augment_star_ucsf(df, inplace=True)
        star.set_original_fields(df, inplace=True)
        df[star.UCSF.IMAGE_PATH] = args.restack
        df[star.UCSF.IMAGE_INDEX] = np.arange(df.shape[0])

    if args.subsample_micrographs is not None:
        if args.bootstrap is not None:
            print("Only particle sampling allows bootstrapping")
            return 1
        mgraphs = df[star.Relion.MICROGRAPH_NAME].unique()
        if args.subsample_micrographs < 1:
            args.subsample_micrographs = np.int(
                max(np.round(args.subsample_micrographs * len(mgraphs)), 1))
        else:
            args.subsample_micrographs = np.int(args.subsample_micrographs)
        ind = np.random.choice(len(mgraphs),
                               size=args.subsample_micrographs,
                               replace=False)
        mask = df[star.Relion.MICROGRAPH_NAME].isin(mgraphs[ind])
        if args.auxout is not None:
            dfaux = df.loc[~mask]
        df = df.loc[mask]

    if args.subsample is not None and args.suffix == "":
        if args.subsample < 1:
            args.subsample = np.int(
                max(np.round(args.subsample * df.shape[0]), 1))
        else:
            args.subsample = np.int(args.subsample)
        ind = np.random.choice(df.shape[0], size=args.subsample, replace=False)
        mask = df.index.isin(ind)
        if args.auxout is not None:
            dfaux = df.loc[~mask]
        df = df.loc[mask]

    if args.copy_angles is not None:
        angle_star = star.parse_star(args.copy_angles, augment=args.augment)
        df = star.smart_merge(df,
                              angle_star,
                              fields=star.Relion.ANGLES,
                              key=args.merge_key)

    if args.copy_alignments is not None:
        align_star = star.parse_star(args.copy_alignments,
                                     augment=args.augment)
        df = star.smart_merge(df,
                              align_star,
                              fields=star.Relion.ALIGNMENTS,
                              key=args.merge_key)

    if args.copy_reconstruct_images is not None:
        recon_star = star.parse_star(args.copy_reconstruct_images,
                                     augment=args.augment)
        df[star.Relion.RECONSTRUCT_IMAGE_NAME] = recon_star[
            star.Relion.IMAGE_NAME]

    if args.transform is not None:
        if args.transform.count(",") == 2:
            r = geom.euler2rot(
                *np.deg2rad([np.double(s) for s in args.transform.split(",")]))
        else:
            r = np.array(json.loads(args.transform))
        df = star.transform_star(df, r, inplace=True)

    if args.invert_hand:
        df = star.invert_hand(df, inplace=True)

    if args.copy_paths is not None:
        path_star = star.parse_star(args.copy_paths)
        star.set_original_fields(df, inplace=True)
        df[star.Relion.IMAGE_NAME] = path_star[star.Relion.IMAGE_NAME]

    if args.copy_ctf is not None:
        ctf_star = pd.concat((star.parse_star(inp, augment=args.augment)
                              for inp in glob.glob(args.copy_ctf)),
                             join="inner")
        df = star.smart_merge(df,
                              ctf_star,
                              star.Relion.CTF_PARAMS,
                              key=args.merge_key)

    if args.copy_micrograph_coordinates is not None:
        coord_star = pd.concat(
            (star.parse_star(inp, augment=args.augment)
             for inp in glob.glob(args.copy_micrograph_coordinates)),
            join="inner")
        df = star.smart_merge(df,
                              coord_star,
                              fields=star.Relion.MICROGRAPH_COORDS,
                              key=args.merge_key)

    if args.scale is not None:
        star.scale_coordinates(df, args.scale, inplace=True)
        star.scale_origins(df, args.scale, inplace=True)
        star.scale_magnification(df, args.scale, inplace=True)

    if args.scale_particles is not None:
        star.scale_origins(df, args.scale_particles, inplace=True)
        star.scale_magnification(df, args.scale_particles, inplace=True)

    if args.scale_coordinates is not None:
        star.scale_coordinates(df, args.scale_coordinates, inplace=True)

    if args.scale_origins is not None:
        star.scale_origins(df, args.scale_origins, inplace=True)

    if args.scale_magnification is not None:
        star.scale_magnification(df, args.scale_magnification, inplace=True)

    if args.scale_apix is not None:
        star.scale_apix(df, args.scale_apix, inplace=True)

    if args.recenter:
        df = star.recenter(df, inplace=True)

    if args.zero_origins:
        df = star.zero_origins(df, inplace=True)

    if args.pick:
        df.drop(df.columns.difference(star.Relion.PICK_PARAMS),
                axis=1,
                inplace=True,
                errors="ignore")

    if args.subsample is not None and args.suffix != "":
        if args.subsample < 1:
            print("Specific integer sample size")
            return 1
        nsamplings = args.bootstrap if args.bootstrap is not None else df.shape[
            0] / np.int(args.subsample)
        inds = np.random.choice(df.shape[0],
                                size=(nsamplings, np.int(args.subsample)),
                                replace=args.bootstrap is not None)
        for i, ind in enumerate(inds):
            star.write_star(
                os.path.join(
                    args.output,
                    os.path.basename(args.input[0])[:-5] + args.suffix +
                    "_%d" % (i + 1)), df.iloc[ind])

    if args.to_micrographs:
        df = star.to_micrographs(df)

    if args.micrograph_range:
        df.set_index(star.Relion.MICROGRAPH_NAME, inplace=True)
        m, n = [int(tok) for tok in args.micrograph_range.split(",")]
        mg = df.index.unique().sort_values()
        outside = list(range(0, m)) + list(range(n, len(mg)))
        dfaux = df.loc[mg[outside]].reset_index()
        df = df.loc[mg[m:n]].reset_index()

    if args.micrograph_path is not None:
        df = star.replace_micrograph_path(df,
                                          args.micrograph_path,
                                          inplace=True)

    if args.min_separation is not None:
        gb = df.groupby(star.Relion.MICROGRAPH_NAME)
        dupes = []
        for n, g in gb:
            nb = algo.query_connected(
                g[star.Relion.COORDS].values - g[star.Relion.ORIGINS],
                args.min_separation / star.calculate_apix(df))
            dupes.extend(g.index[~np.isnan(nb)])
        dfaux = df.loc[dupes]
        df.drop(dupes, inplace=True)

    if args.merge_source is not None:
        if args.merge_fields is not None:
            if "," in args.merge_fields:
                args.merge_fields = args.merge_fields.split(",")
            else:
                args.merge_fields = [args.merge_fields]
        else:
            print("Merge fields must be specified using --merge-fields")
            return 1
        if args.merge_key is not None:
            if "," in args.merge_key:
                args.merge_key = args.merge_key.split(",")
        if args.by_original:
            args.by_original = star.original_field(args.merge_key)
        else:
            args.by_original = args.merge_key
        merge_star = star.parse_star(args.merge_source, augment=args.augment)
        df = star.smart_merge(df,
                              merge_star,
                              fields=args.merge_fields,
                              key=args.merge_key,
                              left_key=args.by_original)

    if args.revert_original:
        df = star.revert_original(df, inplace=True)

    if args.set_optics is not None:
        tok = args.set_optics.split(",")
        df = star.set_optics_groups(df,
                                    sep=tok[0],
                                    idx=int(tok[1]),
                                    inplace=True)
        df.dropna(axis=0, how="any", inplace=True)

    if args.drop_optics_group is not None:
        idx = df[star.Relion.OPTICSGROUP].isin(args.drop_optics_group)
        if not np.any(idx):
            idx = df[star.Relion.OPTICSGROUPNAME].isin(args.drop_optics_group)
        if not np.any(idx):
            print("No group found to drop")
            return 1
        df = df.loc[~idx]

    if args.split_micrographs:
        dfs = star.split_micrographs(df)
        for mg in dfs:
            star.write_star(
                os.path.join(args.output,
                             os.path.basename(mg)[:-4]) + args.suffix, dfs[mg])
        return 0

    if args.auxout is not None and dfaux is not None:
        if not args.relion2:
            df = star.remove_deprecated_relion2(dfaux, inplace=True)
            star.write_star(args.output,
                            df,
                            resort_records=args.sort,
                            simplify=args.augment_output,
                            optics=True)
        else:
            df = star.remove_new_relion31(dfaux, inplace=True)
            star.write_star(args.output,
                            df,
                            resort_records=args.sort,
                            simplify=args.augment_output,
                            optics=False)

    if args.output is not None:
        if not args.relion2:  # Relion 3.1 style output.
            df = star.remove_deprecated_relion2(df, inplace=True)
            star.write_star(args.output,
                            df,
                            resort_records=args.sort,
                            simplify=args.augment_output,
                            optics=True)
        else:
            df = star.remove_new_relion31(df, inplace=True)
            star.write_star(args.output,
                            df,
                            resort_records=args.sort,
                            simplify=args.augment_output,
                            optics=False)
    return 0
Esempio n. 9
0
def main(args):
    log = logging.getLogger('root')
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))

    dfs = [metadata.parse_fx_par(fn) for fn in args.input]
    n = dfs[0].shape[0]
    if not np.all(np.array([df.shape[0] for df in dfs]) == n):
        log.error("Input files are not aligned!")
        return 1
    df = pd.concat(dfs, axis=0, ignore_index=True)
    df["CLASS"] = np.repeat(np.arange(1, len(dfs) + 1), n)

    if args.min_occ:
        df = df[df["OCC"] >= args.min_occ]

    df = df.sort_values(by="OCC")
    df = df.drop_duplicates("C", keep="last")
    df = df.sort_values(by="C")
    df.reset_index(inplace=True)

    if args.min_score is not None:
        if args.min_score < 1:
            args.min_score = np.percentile(df["SCORE"],
                                           (1 - args.min_score) * 100)
        df = df.loc[df["SCORE"] >= args.min_score]

    if args.merge is not None:
        dfo = star.parse_star(args.merge)
        args.apix = star.calculate_apix(dfo)
        args.cs = dfo.iloc[0][star.Relion.CS]
        args.ac = dfo.iloc[0][star.Relion.AC]
        args.voltage = dfo.iloc[0][star.Relion.VOLTAGE]
        df = metadata.par2star(df,
                               data_path=args.stack,
                               apix=args.apix,
                               cs=args.cs,
                               ac=args.ac,
                               kv=args.voltage,
                               invert_eulers=args.invert_eulers)
        if args.stack is None:
            df[star.UCSF.IMAGE_INDEX] = dfo[star.UCSF.IMAGE_INDEX]
            df[star.UCSF.IMAGE_PATH] = dfo[star.UCSF.IMAGE_PATH]
        key = [star.UCSF.IMAGE_INDEX, star.UCSF.IMAGE_PATH]
        fields = star.Relion.MICROGRAPH_COORDS + [
            star.UCSF.IMAGE_ORIGINAL_INDEX, star.UCSF.IMAGE_ORIGINAL_PATH
        ] + [star.Relion.OPTICSGROUP
             ] + star.Relion.OPTICSGROUPTABLE + [star.Relion.RANDOMSUBSET]
        df = star.smart_merge(df, dfo, fields=fields, key=key)
        if args.revert_original:
            df = star.revert_original(df, inplace=True)
    else:
        df = metadata.par2star(df,
                               data_path=args.stack,
                               apix=args.apix,
                               cs=args.cs,
                               ac=args.ac,
                               kv=args.voltage,
                               invert_eulers=args.invert_eulers)

    if args.cls is not None:
        df = star.select_classes(df, args.cls)

    df = star.check_defaults(df, inplace=True)
    df = star.compatible(df, relion2=args.relion2, inplace=True)
    star.write_star(args.output, df, optics=(not args.relion2))
    return 0
Esempio n. 10
0
File: star.py Progetto: dzyla/pyem
def main(args):
    if args.info:
        args.input.append(args.output)

    df = pd.concat(
        (star.parse_star(inp, augment=args.augment) for inp in args.input),
        join="inner")

    dfaux = None

    if args.cls is not None:
        df = star.select_classes(df, args.cls)

    if args.info:
        if star.is_particle_star(df) and star.Relion.CLASS in df.columns:
            c = df[star.Relion.CLASS].value_counts()
            print("%s particles in %d classes" %
                  ("{:,}".format(df.shape[0]), len(c)))
            print("    ".join([
                '%d: %s (%.2f %%)' % (i, "{:,}".format(s), 100. * s / c.sum())
                for i, s in c.sort_index().iteritems()
            ]))
        elif star.is_particle_star(df):
            print("%s particles" % "{:,}".format(df.shape[0]))
        if star.Relion.MICROGRAPH_NAME in df.columns:
            mgraphcnt = df[star.Relion.MICROGRAPH_NAME].value_counts()
            print(
                "%s micrographs, %s +/- %s particles per micrograph" %
                ("{:,}".format(len(mgraphcnt)), "{:,.3f}".format(
                    np.mean(mgraphcnt)), "{:,.3f}".format(np.std(mgraphcnt))))
        try:
            print("%f A/px (%sX magnification)" %
                  (star.calculate_apix(df), "{:,.0f}".format(
                      df[star.Relion.MAGNIFICATION][0])))
        except KeyError:
            pass
        return 0

    if args.drop_angles:
        df.drop(star.Relion.ANGLES, axis=1, inplace=True, errors="ignore")

    if args.drop_containing is not None:
        containing_fields = [
            f for q in args.drop_containing for f in df.columns if q in f
        ]
        if args.invert:
            containing_fields = df.columns.difference(containing_fields)
        df.drop(containing_fields, axis=1, inplace=True, errors="ignore")

    if args.offset_group is not None:
        df[star.Relion.GROUPNUMBER] += args.offset_group

    if args.subsample_micrographs is not None:
        if args.bootstrap is not None:
            print("Only particle sampling allows bootstrapping")
            return 1
        mgraphs = df[star.Relion.MICROGRAPH_NAME].unique()
        if args.subsample_micrographs < 1:
            args.subsample_micrographs = np.int(
                max(np.round(args.subsample_micrographs * len(mgraphs)), 1))
        else:
            args.subsample_micrographs = np.int(args.subsample_micrographs)
        ind = np.random.choice(len(mgraphs),
                               size=args.subsample_micrographs,
                               replace=False)
        mask = df[star.Relion.MICROGRAPH_NAME].isin(mgraphs[ind])
        if args.auxout is not None:
            dfaux = df.loc[~mask]
        df = df.loc[mask]

    if args.subsample is not None and args.suffix == "":
        if args.subsample < 1:
            args.subsample = np.int(
                max(np.round(args.subsample * df.shape[0]), 1))
        else:
            args.subsample = np.int(args.subsample)
        ind = np.random.choice(df.shape[0], size=args.subsample, replace=False)
        mask = df.index.isin(ind)
        if args.auxout is not None:
            dfaux = df.loc[~mask]
        df = df.loc[mask]

    if args.copy_angles is not None:
        angle_star = star.parse_star(args.copy_angles, augment=args.augment)
        df = star.smart_merge(df, angle_star, fields=star.Relion.ANGLES)

    if args.transform is not None:
        if args.transform.count(",") == 2:
            r = star.euler2rot(
                *np.deg2rad([np.double(s) for s in args.transform.split(",")]))
        else:
            r = np.array(json.loads(args.transform))
        df = star.transform_star(df, r, inplace=True)

    if args.invert_hand:
        df[star.Relion.ANGLEROT] = -df[star.Relion.ANGLEROT]
        df[star.Relion.ANGLETILT] = 180 - df[star.Relion.ANGLETILT]

    if args.copy_paths is not None:
        path_star = star.parse_star(args.copy_paths)
        df[star.Relion.IMAGE_NAME] = path_star[star.Relion.IMAGE_NAME]

    if args.copy_ctf is not None:
        ctf_star = pd.concat((star.parse_star(inp, augment=args.augment)
                              for inp in glob.glob(args.copy_ctf)),
                             join="inner")
        df = star.smart_merge(df, ctf_star, star.Relion.CTF_PARAMS)

    if args.copy_micrograph_coordinates is not None:
        coord_star = pd.concat(
            (star.parse_star(inp, augment=args.augment)
             for inp in glob.glob(args.copy_micrograph_coordinates)),
            join="inner")
        df = star.smart_merge(df,
                              coord_star,
                              fields=star.Relion.MICROGRAPH_COORDS)

    if args.scale is not None:
        star.scale_coordinates(df, args.scale, inplace=True)
        star.scale_origins(df, args.scale, inplace=True)
        star.scale_magnification(df, args.scale, inplace=True)

    if args.scale_particles is not None:
        star.scale_origins(df, args.scale, inplace=True)
        star.scale_magnification(df, args.scale, inplace=True)

    if args.scale_coordinates is not None:
        star.scale_coordinates(df, args.scale_coordinates, inplace=True)

    if args.scale_origins is not None:
        star.scale_origins(df, args.scale_origins, inplace=True)

    if args.scale_magnification is not None:
        star.scale_magnification(df, args.scale_magnfication, inplace=True)

    if args.recenter:
        df = star.recenter(df, inplace=True)

    if args.zero_origins:
        df = star.zero_origins(df, inplace=True)

    if args.pick:
        df.drop(df.columns.difference(star.Relion.PICK_PARAMS),
                axis=1,
                inplace=True,
                errors="ignore")

    if args.subsample is not None and args.suffix != "":
        if args.subsample < 1:
            print("Specific integer sample size")
            return 1
        nsamplings = args.bootstrap if args.bootstrap is not None else df.shape[
            0] / np.int(args.subsample)
        inds = np.random.choice(df.shape[0],
                                size=(nsamplings, np.int(args.subsample)),
                                replace=args.bootstrap is not None)
        for i, ind in enumerate(inds):
            star.write_star(
                os.path.join(
                    args.output,
                    os.path.basename(args.input[0])[:-5] + args.suffix +
                    "_%d" % (i + 1)), df.iloc[ind])

    if args.to_micrographs:
        gb = df.groupby(star.Relion.MICROGRAPH_NAME)
        mu = gb.mean()
        df = mu[[
            c for c in star.Relion.CTF_PARAMS + star.Relion.MICROSCOPE_PARAMS +
            [star.Relion.MICROGRAPH_NAME] if c in mu
        ]].reset_index()

    if args.micrograph_range:
        df.set_index(star.Relion.MICROGRAPH_NAME, inplace=True)
        m, n = [int(tok) for tok in args.micrograph_range.split(",")]
        mg = df.index.unique().sort_values()
        outside = list(range(0, m)) + list(range(n, len(mg)))
        dfaux = df.loc[mg[outside]].reset_index()
        df = df.loc[mg[m:n]].reset_index()

    if args.micrograph_path is not None:
        df = star.replace_micrograph_path(df,
                                          args.micrograph_path,
                                          inplace=True)

    if args.min_separation is not None:
        gb = df.groupby(star.Relion.MICROGRAPH_NAME)
        dupes = []
        for n, g in gb:
            nb = algo.query_connected(
                g[star.Relion.COORDS],
                args.min_separation / star.calculate_apix(df))
            dupes.extend(g.index[~np.isnan(nb)])
        dfaux = df.loc[dupes]
        df.drop(dupes, inplace=True)

    if args.merge_source is not None:
        if args.merge_fields is not None:
            if "," in args.merge_fields:
                args.merge_fields = args.merge_fields.split(",")
            else:
                args.merge_fields = [args.merge_fields]
        else:
            print("Merge fields must be specified using --merge-fields")
            return 1
        if args.merge_key is not None:
            if "," in args.merge_key:
                args.merge_key = args.merge_key.split(",")
        merge_star = star.parse_star(args.merge_source, augment=args.augment)
        df = star.smart_merge(df,
                              merge_star,
                              fields=args.merge_fields,
                              key=args.merge_key)

    if args.split_micrographs:
        dfs = star.split_micrographs(df)
        for mg in dfs:
            star.write_star(
                os.path.join(args.output,
                             os.path.basename(mg)[:-4]) + args.suffix, dfs[mg])
        return 0

    if args.auxout is not None and dfaux is not None:
        star.write_star(args.auxout, dfaux, simplify=args.augment)

    if args.output is not None:
        star.write_star(args.output, df, simplify=args.augment)
    return 0
Esempio n. 11
0
def main(args):
    log = logging.getLogger('root')
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))
    # apix = args.apix = hdr["xlen"] / hdr["nx"]

    for fn in args.input:
        if not (fn.endswith(".star") or fn.endswith(".mrcs") or
                fn.endswith(".mrc") or fn.endswith(".par")):
            log.error("Only .star, .mrc, .mrcs, and .par files supported")
            return 1

    first_ptcl = 0
    dfs = []
    with mrc.ZSliceWriter(args.output) as writer:
        for fn in args.input:
            if fn.endswith(".star"):
                df = star.parse_star(fn, augment=True)
                if args.cls is not None:
                    df = star.select_classes(df, args.cls)
                star.set_original_fields(df, inplace=True)
                if args.resort:
                    df = df.sort_values([star.UCSF.IMAGE_ORIGINAL_PATH,
                                         star.UCSF.IMAGE_ORIGINAL_INDEX])
                for idx, row in df.iterrows():
                    if args.stack_path is not None:
                        input_stack_path = os.path.join(args.stack_path, row[star.UCSF.IMAGE_ORIGINAL_PATH])
                    else:
                        input_stack_path = row[star.UCSF.IMAGE_ORIGINAL_PATH]
                    with mrc.ZSliceReader(input_stack_path) as reader:
                        i = row[star.UCSF.IMAGE_ORIGINAL_INDEX]
                        writer.write(reader.read(i))
            elif fn.endswith(".par"):
                if args.stack_path is None:
                    log.error(".par file input requires --stack-path")
                    return 1
                df = metadata.par2star(metadata.parse_fx_par(fn), data_path=args.stack_path)
                # star.set_original_fields(df, inplace=True)  # Redundant.
                star.augment_star_ucsf(df)
            elif fn.endswith(".csv"):
                return 1
            elif fn.endswith(".cs"):
                return 1
            else:
                if fn.endswith(".mrcs"):
                    with mrc.ZSliceReader(fn) as reader:
                        for img in reader:
                            writer.write(img)
                        df = pd.DataFrame(
                            {star.UCSF.IMAGE_ORIGINAL_INDEX: np.arange(reader.nz)})
                    df[star.UCSF.IMAGE_ORIGINAL_PATH] = fn
                else:
                    print("Unrecognized input file type")
                    return 1
            if args.star is not None:
                df[star.UCSF.IMAGE_INDEX] = np.arange(first_ptcl,
                                                      first_ptcl + df.shape[0])
                if args.abs_path:
                    df[star.UCSF.IMAGE_PATH] = writer.path
                else:
                    df[star.UCSF.IMAGE_PATH] = os.path.relpath(writer.path, os.path.dirname(args.star))
                df["index"] = df[star.UCSF.IMAGE_INDEX]
                star.simplify_star_ucsf(df)
                dfs.append(df)
            first_ptcl += df.shape[0]

    if args.star is not None:
        df = pd.concat(dfs, join="inner")
        # df = pd.concat(dfs)
        # df = df.dropna(df, axis=1, how="any")
        if not args.relion2:  # Relion 3.1 style output.
            df = star.remove_deprecated_relion2(df, inplace=True)
            star.write_star(args.star, df, resort_records=False, optics=True)
        else:
            df = star.remove_new_relion31(df, inplace=True)
            star.write_star(args.star, df, resort_records=False, optics=False)
    return 0
Esempio n. 12
0
def main(args):
    log = logging.getLogger(__name__)
    log.setLevel(logging.INFO)
    hdlr = logging.StreamHandler(sys.stdout)
    if args.quiet:
        hdlr.setLevel(logging.WARNING)
    else:
        hdlr.setLevel(logging.INFO)
    log.addHandler(hdlr)

    if args.markers is None and args.target is None and args.sym is None:
        log.error(
            "A marker or symmetry group must be provided via --target, --markers, or --sym"
        )
        return 1
    elif args.sym is None and args.markers is None and args.boxsize is None and args.origin is None:
        log.error(
            "An origin must be provided via --boxsize, --origin, or --markers")
        return 1
    elif args.sym is not None and args.markers is None and args.target is None and \
            (args.boxsize is not None or args.origin is not None):
        log.warn("Symmetry expansion alone will ignore --target or --origin")

    if args.target is not None:
        try:
            args.target = np.array(
                [np.double(tok) for tok in args.target.split(",")])
        except:
            log.error(
                "Target must be comma-separated list of x,y,z coordinates")
            return 1

    if args.origin is not None:
        if args.boxsize is not None:
            logger.warn("--origin supersedes --boxsize")
        try:
            args.origin = np.array(
                [np.double(tok) for tok in args.origin.split(",")])
        except:
            log.error(
                "Origin must be comma-separated list of x,y,z coordinates")
            return 1

    if args.marker_sym is not None:
        args.marker_sym = relion_symmetry_group(args.marker_sym)

    star = parse_star(args.input, keep_index=False)

    if args.apix is None:
        args.apix = calculate_apix(star)
        if args.apix is None:
            logger.warn(
                "Could not compute pixel size, default is 1.0 Angstroms per pixel"
            )
            args.apix = 1.0

    if args.cls is not None:
        star = select_classes(star, args.cls)

    cmms = []

    if args.markers is not None:
        cmmfiles = glob.glob(args.markers)
        for cmmfile in cmmfiles:
            for cmm in parse_cmm(cmmfile):
                cmms.append(cmm / args.apix)

    if args.target is not None:
        cmms.append(args.target / args.apix)

    stars = []

    if len(cmms) > 0:
        if args.origin is not None:
            args.origin /= args.apix
        elif args.boxsize is not None:
            args.origin = np.ones(3) * args.boxsize / 2
        else:
            log.warn("Using first marker as origin")
            if len(cmms) == 1:
                log.error(
                    "Using first marker as origin, expected at least two markers"
                )
                return 1
            args.origin = cmms[0]
            cmms = cmms[1:]

        markers = [cmm - args.origin for cmm in cmms]

        if args.marker_sym is not None and len(markers) == 1:
            markers = [op.dot(markers[0]) for op in args.marker_sym]
        elif args.marker_sym is not None:
            log.error(
                "Exactly one marker is required for symmetry-derived subparticles"
            )
            return 1

        rots = [euler2rot(*np.deg2rad(r[1])) for r in star[ANGLES].iterrows()]
        #origins = star[ORIGINS].copy()
        for m in markers:
            d = np.linalg.norm(m)
            ax = m / d
            op = euler2rot(
                *np.array([np.arctan2(ax[1], ax[0]),
                           np.arccos(ax[2]), 0.]))
            stars.append(transform_star(star, op.T, -d, rots=rots))

    if args.sym is not None:
        args.sym = relion_symmetry_group(args.sym)
        if len(stars) > 0:
            stars = [
                se for se in subparticle_expansion(
                    s, args.sym, -args.displacement / args.apix) for s in stars
            ]
        else:
            stars = list(
                subparticle_expansion(star, args.sym,
                                      -args.displacement / args.apix))

    if args.recenter:
        for s in stars:
            recenter(s, inplace=True)

    if args.suffix is None and not args.skip_join:
        if len(stars) > 1:
            star = interleave(stars)
        else:
            star = stars[0]
        write_star(args.output, star)
    else:
        for i, star in enumerate(stars):
            write_star(os.path.join(args.output, args.suffix + "_%d" % i),
                       star)
    return 0
Esempio n. 13
0
def main(args):
    log = logging.getLogger(__name__)
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))

    if args.target is None and args.sym is None and args.transform is None and args.euler is None:
        log.error("At least a target, transformation matrix, Euler angles, or a symmetry group must be provided")
        return 1
    elif (args.target is not None or args.transform is not None) and args.boxsize is None and args.origin is None:
        log.error("An origin must be provided via --boxsize or --origin")
        return 1

    if args.apix is None:
        df = star.parse_star(args.input, nrows=1)
        args.apix = star.calculate_apix(df)
        if args.apix is None:
            log.warn("Could not compute pixel size, default is 1.0 Angstroms per pixel")
            args.apix = 1.0
            df[star.Relion.MAGNIFICATION] = 10000
            df[star.Relion.DETECTORPIXELSIZE] = 1.0

    if args.target is not None:
        try:
            args.target = np.array([np.double(tok) for tok in args.target.split(",")])
        except:
            log.error("Target must be comma-separated list of x,y,z coordinates")
            return 1

    if args.euler is not None:
        try:
            args.euler = np.deg2rad(np.array([np.double(tok) for tok in args.euler.split(",")]))
            args.transform = np.zeros((3, 4))
            args.transform[:, :3] = geom.euler2rot(*args.euler)
            if args.target is not None:
                args.transform[:, -1] = args.target
        except:
            log.error("Euler angles must be comma-separated list of rotation, tilt, skew in degrees")
            return 1

    if args.transform is not None and not hasattr(args.transform, "dtype"):
        if args.target is not None:
            log.warn("--target supersedes --transform")
        try:
            args.transform = np.array(json.loads(args.transform))
        except:
            log.error("Transformation matrix must be in JSON/Numpy format")
            return 1

    if args.origin is not None:
        if args.boxsize is not None:
            log.warn("--origin supersedes --boxsize")
        try:
            args.origin = np.array([np.double(tok) for tok in args.origin.split(",")])
            args.origin /= args.apix
        except:
            log.error("Origin must be comma-separated list of x,y,z coordinates")
            return 1
    elif args.boxsize is not None:
        args.origin = np.ones(3) * args.boxsize / 2
    
    if args.sym is not None:
        args.sym = util.relion_symmetry_group(args.sym)

    df = star.parse_star(args.input)

    if star.calculate_apix(df) != args.apix:
        log.warn("Using specified pixel size of %f instead of calculated size %f" %
                 (args.apix, star.calculate_apix(df)))

    if args.cls is not None:
        df = star.select_classes(df, args.cls)

    if args.target is not None:
        args.target /= args.apix
        c = args.target - args.origin
        c = np.where(np.abs(c) < 1, 0, c)  # Ignore very small coordinates.
        d = np.linalg.norm(c)
        ax = c / d
        r = geom.euler2rot(*np.array([np.arctan2(ax[1], ax[0]), np.arccos(ax[2]), np.deg2rad(args.psi)]))
        d = -d
    elif args.transform is not None:
        r = args.transform[:, :3]
        if args.transform.shape[1] == 4:
            d = args.transform[:, -1] / args.apix
            d = r.dot(args.origin) + d - args.origin
        else:
            d = 0
    elif args.sym is not None:
        r = np.identity(3)
        d = -args.displacement / args.apix
    else:
        log.error("At least a target or symmetry group must be provided via --target or --sym")
        return 1

    log.debug("Final rotation: %s" % str(r).replace("\n", "\n" + " " * 16))
    ops = [op.dot(r.T) for op in args.sym] if args.sym is not None else [r.T]
    log.debug("Final translation: %s (%f px)" % (str(d), np.linalg.norm(d)))
    dfs = list(subparticle_expansion(df, ops, d, rotate=args.shift_only, invert=args.invert, adjust_defocus=args.adjust_defocus))
 
    if args.recenter:
        for s in dfs:
            star.recenter(s, inplace=True)
    
    if args.suffix is None and not args.skip_join:
        if len(dfs) > 1:
            df = util.interleave(dfs)
        else:
            df = dfs[0]
        df = star.compatible(df, relion2=args.relion2, inplace=True)
        star.write_star(args.output, df, optics=(not args.relion2))
    else:
        for i, s in enumerate(dfs):
            s = star.compatible(s, relion2=args.relion2, inplace=True)
            star.write_star(os.path.join(args.output, args.suffix + "_%d" % i), s, optics=(not args.relion2))
    return 0
Esempio n. 14
0
def main(args):
    meta = parse_metadata(args.input)  # Read cryosparc metadata file.
    meta["data_input_idx"] = [
        "%.6d" % (i + 1) for i in meta["data_input_idx"]
    ]  # Reformat particle idx for Relion.

    if "data_input_relpath" not in meta.columns:
        if args.data_path is None:
            print(
                "Data path missing, use --data-path to specify particle stack path"
            )
            return 1
        meta["data_input_relpath"] = args.data_path

    meta["data_input_relpath"] = meta["data_input_idx"].str.cat(
        meta["data_input_relpath"], sep="@")  # Construct rlnImageName field.
    # Take care of trivial mappings.
    rlnheaders = [
        general[h] for h in meta.columns
        if h in general and general[h] is not None
    ]
    df = meta[[
        h for h in meta.columns if h in general and general[h] is not None
    ]].copy()
    df.columns = rlnheaders

    if "rlnRandomSubset" in df.columns:
        df["rlnRandomSubset"] = df["rlnRandomSubset"].apply(
            lambda x: ord(x) - 64)

    if "rlnPhaseShift" in df.columns:
        df["rlnPhaseShift"] = np.rad2deg(df["rlnPhaseShift"])

    # Class assignments and other model parameters.
    phic = meta[[h for h in meta.columns if "phiC" in h
                 ]]  # Posterior probability over class assignments.
    if len(phic.columns) > 0:  # Check class assignments exist in input.
        # phic.columns = [int(h[21]) for h in meta.columns if "phiC" in h]
        phic.columns = range(len(phic.columns))
        cls = phic.idxmax(axis=1)
        for p in model:
            if model[p] is not None:
                pspec = p.split("model")[1]
                param = meta[[h for h in meta.columns if pspec in h]]
                if len(param.columns) > 0:
                    param.columns = phic.columns
                    df[model[p]] = param.lookup(param.index, cls)
        df["rlnClassNumber"] = cls + 1  # Add one for Relion indexing.
    else:
        for p in model:
            if model[p] is not None and p in meta.columns:
                df[model[p]] = meta[p]
        df["rlnClassNumber"] = 1

    if args.cls is not None:
        df = star.select_classes(df, args.cls)

    # Convert axis-angle representation to Euler angles (degrees).
    if df.columns.intersection(star.Relion.ANGLES).size == len(
            star.Relion.ANGLES):
        df[star.Relion.ANGLES] = np.rad2deg(df[star.Relion.ANGLES].apply(
            lambda x: rot2euler(expmap(x)), axis=1, raw=True, broadcast=True))

    if args.minphic is not None:
        mask = np.all(phic < args.minphic, axis=1)
        if args.keep_bad:
            df.loc[mask, "rlnClassNumber"] = 0
        else:
            df.drop(df[mask].index, inplace=True)

    if args.copy_micrograph_coordinates is not None:
        coord_star = pd.concat(
            (star.parse_star(inp, keep_index=False)
             for inp in glob(args.copy_micrograph_coordinates)),
            join="inner")
        df = star.smart_merge(df,
                              coord_star,
                              fields=star.Relion.MICROGRAPH_COORDS)

    if args.transform is not None:
        r = np.array(json.loads(args.transform))
        df = star.transform_star(df, r, inplace=True)

    # Write Relion .star file with correct headers.
    star.write_star(args.output, df, reindex=True)
    return 0