Esempio n. 1
0
def test_v003():

    folder_path = './data/tmp1'
    utils.make_dir_if_not_exists(folder_path)

    evo = Evolution(
        random_seed=utils.random_int(),
        population_size=4,
        genotype_size=2,
        evaluation_function=lambda pop, seeds: np.sum(
            pop, axis=1),  #np.arange(1,0,-1/len(pop)),
        performance_objective=0.5,  #MAX MIN ZERO ABS_MAX
        fitness_normalization_mode='NONE',
        selection_mode='UNIFORM',  # UNIFORM, SUS, RWS
        reproduce_from_elite=True,
        reproduction_mode=
        'GENETIC_ALGORITHM',  # 'GENETIC_ALGORITHM' 'HILL_CLIMBING'
        mutation_variance=0.1,
        elitist_fraction=0.5,
        mating_fraction=0.5,
        crossover_probability=0.5,
        crossover_mode='UNIFORM',
        max_generation=100,
        termination_function=None,
        checkpoint_interval=1,
        folder_path=folder_path,
        timeit=True)
    evo.run()
    evo.timing.report()
def test_random_genotypes():
    # gen_size = 20
    # pop_size = 96
    a = Evolution.get_random_genotype(RandomState(None), 20)
    b = Evolution.get_random_genotype(RandomState(None), 20)
    a = linmap(a, (-1, 1), (0, 1))
    b = linmap(b, (-1, 1), (0, 1))
    dist = np.linalg.norm(a - b)
    similarity = 1 - dist
    print(a)
    print(b)
    print(a - b)
    print(dist)
    print(similarity)
Esempio n. 3
0
def test_crossover():

    evo = Evolution(
        population_size=0,
        genotype_size=10,
        evaluation_function=lambda _: 0,
        # crossover_mode = "UNIFORM"
        crossover_mode="1-POINT",
        crossover_points=[2, 5, 8])

    genotype1 = [0] * evo.genotype_size
    genotype2 = [1] * evo.genotype_size

    a, b = evo.crossover(genotype1, genotype2)
    print(''.join(str(int(x)) for x in a))
    print(''.join(str(int(x)) for x in b))
Esempio n. 4
0
def test_random_genotype():
    from dol import gen_structure
    from pyevolver.evolution import Evolution
    from numpy.random import RandomState
    num_dim = 1
    num_neurons = 2
    default_gen_structure = gen_structure.DEFAULT_GEN_STRUCTURE(
        num_dim, num_neurons)
    gen_size = gen_structure.get_genotype_size(default_gen_structure)
    num_brain_neurons = gen_structure.get_num_brain_neurons(
        default_gen_structure)
    print('Gen size of agent: {}'.format(gen_size))
    print('Num brain neurons: {}'.format(num_brain_neurons))
    random_genotype = Evolution.get_random_genotype(RandomState(None),
                                                    gen_size)
    agent = Agent(
        num_dim,
        num_brain_neurons,
        brain_step_size=0.1,
        genotype_structure=default_gen_structure,
    )
    agent.init_params()
    agent.genotype_to_phenotype(random_genotype)
    for i in range(10):
        agent.brain.euler_step()
        print(i)
        print('  brain output: {}'.format(agent.brain.output))
        agent.compute_motor_outputs()
        print('  motor output: {}'.format(agent.motors))
Esempio n. 5
0
def run_random_agents():
    genotype_structure=gen_structure.DEFAULT_GEN_STRUCTURE(2)
    gen_size = gen_structure.get_genotype_size(genotype_structure)
    random_genotype = Evolution.get_random_genotype(RandomState(None), gen_size*2) # pairs of agents in a single genotype

    sim = Simulation(
        genotype_structure=genotype_structure,
        agent_body_radius=4,
        agents_pair_initial_distance=20,
        agent_sensors_divergence_angle=np.radians(45),  # angle between sensors and axes of symmetry
        brain_step_size=0.1,
        trial_duration=200,  # the brain would iterate trial_duration/brain_step_size number of time
        num_cores=1
    )

    trial_index = 0
    data_record_list = []
    random_seed = utils.random_int()

    perf = sim.run_simulation([random_genotype],0, random_seed, data_record_list=data_record_list)
    print("random perf: {}".format(perf))


    data_record = data_record_list[0]
    vis = Visualization(sim)
    vis.start_simulation_from_data(trial_index, data_record)
Esempio n. 6
0
def random_pairs():
    dir = "data/2n_rp-3_shannon-dd_neural_social_coll-edge/seed_001"
    evo_file = os.path.join(dir, "evo_2000.json")
    sim_file = os.path.join(dir, "simulation.json")
    output_file = os.path.join(dir, "perf_dist.json")
    evo = Evolution.load_from_file(evo_file, folder_path=dir)
    sim = Simulation.load_from_file(sim_file)
    sim.num_random_pairings = 0  # we build the pairs dynamically
    pop_size = len(evo.population)
    best_agent = evo.population[0]
    if os.path.exists(output_file):
        perfomances, distances = read_data_from_file(output_file)
    else:
        new_population_pairs = []
        perfomances = []
        distances = []
        for j in range(1, pop_size):
            b = evo.population[j]
            pair = np.concatenate([best_agent, b])
            new_population_pairs.append(pair)
            distances.append(euclidean_distance(best_agent, b))
        for i in tqdm(range(pop_size - 1)):
            perf = sim.run_simulation(new_population_pairs, i)
            perfomances.append(perf)
        write_data_to_file(perfomances, distances, output_file)
    plt.scatter(distances, perfomances)
    plt.show()
Esempio n. 7
0
def test_mutate():

    np.random.seed(11)

    evo = Evolution(
        population_size=2,
        genotype_size=10,
        search_constraint=np.array([True] * 10),
        # search_constraint = np.array([False] * 10),
        evaluation_function=lambda _: [1],
        max_generation=0,
    )
    genotype = np.array([-1] * 10)
    mutant = evo.mutate(genotype)
    print(mutant)

    print('SUCCESS!')
Esempio n. 8
0
def test_select_mating_pool_RWS():

    from collections import Counter
    performances = np.array([1000, 1000, 300, 200, 200, 100, 50, 50, 50, 50])
    np.random.seed(11)

    evo = Evolution(
        population_size=10,
        population=np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
        genotype_size=1,
        fitness_normalization_mode='RANK',
        selection_mode='RWS',
        evaluation_function=lambda _: performances,
        max_generation=0,
        elitist_fraction=0.2,
        mating_fraction=0.8,  # in beer this is 1 - elitist_fraction
    )

    evo.run()

    print("Fitnesses: {}".format(evo.fitnesses))

    # assert evo.n_elite == 2 # only in genetic algorithm
    # assert evo.n_fillup == 0  # only in genetic algorithm
    assert evo.n_mating == evo.population_size

    mating_counter = Counter()

    repetitions = 10000
    for _ in range(repetitions):
        mating_pool = evo.select_mating_pool()
        for e in mating_pool:
            mating_counter[e] += 1

    # we check if the number of time each genome is selected is proportionate to the its performance (and fitness)
    # not guaranteed to work for fitness_normalization_mode == 'FPS' because of the linear scaling
    # not easy to test this further (not implemented in beer)
    for i in range(2, 9):
        assert mating_counter[i] > mating_counter[i + 1]

    print(sorted(mating_counter.items(), key=lambda kv: kv[0]))

    print('SUCCESS!')
def single_paired_agents(input_dir='data'):
    """
    Test whether individually evolved agents can perform the task together
    and calculate their combined neural complexity.
    """
    from dol.simulation import Simulation
    import json
    seed_dir = f'{input_dir}/2n_exc-0.1_zfill/seed_001'
    generation = 5000
    population_idx = 0

    rs = RandomState(1)

    sim_json_filepath = os.path.join(seed_dir, 'simulation.json')
    evo_json_filepath = os.path.join(seed_dir, 'evo_{}.json'.format(generation))

    sim = Simulation.load_from_file(
        sim_json_filepath,
        switch_agents_motor_control=True,  # forcing switch
        num_random_pairings=1  # forcing to play with one another
    )

    evo = Evolution.load_from_file(evo_json_filepath, folder_path=None)

    original_populations = evo.population_unsorted

    best_two_agent_pop = np.array([
        [
            original_populations[0][x] for x in
            evo.population_sorted_indexes[population_idx][:2]
        ]
    ])

    data_record_list = []

    performance, sim_perfs, _ = sim.run_simulation(
        best_two_agent_pop, 0, 0, 0, None,
        data_record_list
    )

    nc = get_sim_agent_complexity(
        sim_perfs, sim, data_record_list,
        agent_index=None,
        sim_idx=None,
        analyze_sensors=True,
        analyze_brain=True,
        analyze_motors=False,
        combined_complexity=False,
        only_part_n1n2=False,
        rs=rs
    )

    print('performance', performance)
    print("Sim agents similarity: ", sim.agents_genotype_distance[0])
    print('nc', nc)
Esempio n. 10
0
def time_evolution():
    evo = Evolution(
        random_seed=123,
        population_size=5000,
        genotype_size=100,
        evaluation_function=lambda pop, seeds: [1] * len(pop),
        fitness_normalization_mode='RANK',
        selection_mode='RWS',  # SUS, RWS
        reproduction_mode=
        'GENETIC_ALGORITHM',  # 'GENETIC_ALGORITHM' 'HILL_CLIMBING'
        mutation_variance=0.1,
        elitist_fraction=0.1,
        mating_fraction=0.9,
        crossover_probability=0.5,
        crossover_mode='1-POINT',
        max_generation=100,
        termination_function=None,
        checkpoint_interval=1,
        timeit=True)
    evo.run()
    evo.timing.report()
Esempio n. 11
0
def test_fitness_RANK():

    performances = np.array([1, 50, 15, 21, 100, 23, 88, 45, 44, 76])

    evo = Evolution(population_size=10,
                    genotype_size=0,
                    fitness_normalization_mode='RANK',
                    evaluation_function=lambda _: performances,
                    max_generation=0)

    evo.run()

    correct_fitness_rank = sorted([
        0.11000000000000001, 0.10777777777777779, 0.10555555555555556,
        0.10333333333333335, 0.10111111111111111, 0.09888888888888889,
        0.09666666666666666, 0.09444444444444444, 0.09222222222222222, 0.09
    ],
                                  reverse=True)
    assert list(evo.fitnesses) == correct_fitness_rank
    # print('fitnesses_rank: {}'.format(fitnesses_rank))
    print('SUCCESS!')
Esempio n. 12
0
def test_select_mating_pool_SUS():
    np.random.seed(11)

    evo = Evolution(
        population_size=10,
        population=np.array(list(range(1, 11))),
        genotype_size=1,
        fitness_normalization_mode='FPS',
        selection_mode='SUS',
        reproduction_mode='GENETIC_ALGORITHM',
        evaluation_function=lambda _:
        [0.3, 0.2, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05],
        max_generation=0,
        elitist_fraction=0.2,
        mating_fraction=0.8,  # in beer this is 1 - elitist_fraction
    )

    evo.run()
    evo.fitnesses = np.array(
        [0.3, 0.2, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05])

    # print("Fitnesses: {}".format(evo.fitnesses))

    assert evo.n_mating == 8
    assert evo.n_elite == 2
    assert evo.n_fillup == 0

    mating_pool = evo.select_mating_pool()

    print(mating_pool)
    assert mating_pool == [1, 1, 1, 2, 3, 4, 6, 8]

    print('SUCCESS!')
Esempio n. 13
0
def test_fitness_FPS():

    performances = np.array([1, 50, 15, 21, 100, 23, 88, 45, 44, 76])

    evo = Evolution(population_size=10,
                    genotype_size=0,
                    fitness_normalization_mode='FPS',
                    evaluation_function=lambda _: performances,
                    max_generation=0)

    evo.run()

    correct_fitness_fps = sorted([
        0.09156424581005587, 0.10068901303538176, 0.09417132216014897,
        0.09528864059590317, 0.11000000000000001, 0.0956610800744879,
        0.10776536312849162, 0.09975791433891994, 0.09957169459962756,
        0.10553072625698326
    ],
                                 reverse=True)
    assert list(evo.fitnesses) == correct_fitness_fps
    # print('fitnesses_fps: {}'.format(fitnesses_fps))
    print('SUCCESS!')
def main_scatter_plot(input_dir='data'):
    """
    From a given seed, look at the last generation,
    and compute the neural complexity for all agents.
    Plot correlation between fitness and complexity.
    """
    seed_dir = f'{input_dir}/2n_exc-0.1_zfill/seed_001'
    generation = 5000
    pop_index = 0

    analyze_sensors = True
    analyze_brain = True
    analyze_motors = False

    combined_complexity = False
    only_part_n1n2 = True

    rs = RandomState(1)

    evo_file = sorted([f for f in os.listdir(seed_dir) if 'evo_' in f])[0]
    evo_json_filepath = os.path.join(seed_dir, evo_file)
    evo = Evolution.load_from_file(evo_json_filepath, folder_path=None)

    pop_size = len(evo.population[0])
    print('pop_size', pop_size)

    perf_data = np.zeros(pop_size)
    nc_data = np.zeros(pop_size)

    for genotype_idx in tqdm(range(pop_size)):
        perf, sim_perfs, evo, sim, data_record_list, sim_idx = run_simulation_from_dir(
            seed_dir, generation, genotype_idx, population_idx=pop_index, quiet=True)

        agent_index = None # agent_index must be None (to get best agents of the two)
        sim_idx = None # sim_idx must be None (to get best sim among randomom pairs)

        nc_avg = get_sim_agent_complexity(
            sim_perfs, sim, data_record_list, agent_index, sim_idx,
            analyze_sensors, analyze_brain, analyze_motors,
            combined_complexity, only_part_n1n2, rs
        )

        perf_data[genotype_idx] = perf
        nc_data[genotype_idx] = nc_avg

    fig = plt.figure(figsize=(10, 6))
    ax = fig.add_subplot(1, 1, 1)
    ax.scatter(perf_data, nc_data)
    plt.xlabel('performance')
    plt.ylabel('nc')
    plt.show()
Esempio n. 15
0
def test_continuation():

    eval_func = lambda pop, rand_seed: RandomState(rand_seed).random(len(pop))

    print('Loading evolution from json file')
    folder_path = './tmp_cont1'
    utils.make_dir_if_not_exists(folder_path)
    evo1 = Evolution(
        random_seed=123,
        population_size=1000,
        genotype_size=2,
        evaluation_function=eval_func,
        fitness_normalization_mode='RANK',
        selection_mode='RWS',
        reproduction_mode=
        'GENETIC_ALGORITHM',  #'HILL_CLIMBING',  'GENETIC_ALGORITHM'
        mutation_variance=0.1,
        elitist_fraction=0.1,
        mating_fraction=0.9,
        crossover_probability=0.5,
        crossover_mode='1-POINT',
        max_generation=100,
        folder_path=folder_path,
        termination_function=None,
        checkpoint_interval=50)
    evo1.run()

    print()

    new_folder_path = './tmp_cont2'
    utils.make_dir_if_not_exists(new_folder_path)
    evo2 = Evolution.load_from_file(os.path.join(folder_path,
                                                 'evo_00050.json'),
                                    evaluation_function=eval_func,
                                    folder_path=new_folder_path,
                                    max_generation=110)
    evo2.run()
Esempio n. 16
0
def test_random_genotype():
    from dyadic_interaction import gen_structure
    from pyevolver.evolution import Evolution
    from numpy.random import RandomState
    default_gen_structure = gen_structure.DEFAULT_GEN_STRUCTURE(2)
    gen_size = gen_structure.get_genotype_size(default_gen_structure)
    num_brain_neurons = gen_structure.get_num_brain_neurons(default_gen_structure)
    print('Gen size of agent: {}'.format(gen_size))
    print('Num brain neurons: {}'.format(num_brain_neurons))
    random_genotype = Evolution.get_random_genotype(RandomState(None), gen_size)        
    agent_net = AgentNetwork(
        num_brain_neurons,
        brain_step_size=0.1,
        genotype_structure=default_gen_structure,
        genotype = random_genotype
    )
    agent_net.brain.states = np.array([0., 0.])
    agent_net.brain.compute_output()    
    print('brain output: {}'.format(agent_net.brain.output))    
    motor_outputs = agent_net.compute_motor_outputs()
    print('motor output: {}'.format(motor_outputs))
Esempio n. 17
0
def same_pairs():
    dir = "data/2n_shannon-dd_neural_social_coll-edge/seed_001"
    evo_file = os.path.join(dir, "evo_2000.json")
    sim_file = os.path.join(dir, "simulation.json")
    output_file = os.path.join(dir, "perf_dist.json")
    if os.path.exists(output_file):
        perfomances, distances = read_data_from_file(output_file)
    else:
        evo = Evolution.load_from_file(evo_file, folder_path=dir)
        sim = Simulation.load_from_file(sim_file)
        assert sim.num_random_pairings == 0
        pop_size = len(evo.population)
        perfomances = []
        distances = []
        for i in tqdm(range(pop_size)):
            perf = sim.run_simulation(evo.population, i)
            a, b = np.array_split(evo.population[i], 2)
            perfomances.append(perf)
            distances.append(euclidean_distance(a, b))
        write_data_to_file(perfomances, distances, output_file)
    plt.scatter(distances, perfomances)
    plt.show()
Esempio n. 18
0
def run_simulation_from_dir(dir, generation=None, genotype_idx=0, **kwargs):
    ''' 
    utitity function to get data from a simulation
    '''

    random_pos_angle = kwargs.get('random_pos_angle', None)
    entropy_type = kwargs.get('entropy_type', None)
    entropy_target_value = kwargs.get('entropy_target_value', None)
    concatenate = kwargs.get('concatenate', None)
    collision_type = kwargs.get('collision_type', None)
    ghost_index = kwargs.get('ghost_index', None)
    initial_distance = kwargs.get('initial_distance', None)
    isolation = kwargs.get('isolation', None)
    write_data = kwargs.get('write_data', None)

    func_arguments = locals()
    from pyevolver.evolution import Evolution
    evo_files = [f for f in os.listdir(dir) if f.startswith('evo_')]
    assert len(evo_files) > 0, "Can't find evo files in dir {}".format(dir)
    file_num_zfill = len(evo_files[0].split('_')[1].split('.')[0])
    if generation is None:
        # assumes last generation
        evo_files = sorted([f for f in os.listdir(dir) if f.startswith('evo')])
        evo_json_filepath = os.path.join(dir, evo_files[-1])
    else:
        generation = str(generation).zfill(file_num_zfill)
        evo_json_filepath = os.path.join(dir, 'evo_{}.json'.format(generation))
    sim_json_filepath = os.path.join(dir, 'simulation.json')
    sim = Simulation.load_from_file(sim_json_filepath)
    evo = Evolution.load_from_file(evo_json_filepath, folder_path=dir)

    if initial_distance is not None:
        print("Forcing initial distance to: {}".format(initial_distance))
        sim.agents_pair_initial_distance = initial_distance
        sim.set_initial_positions_angles()

    if random_pos_angle:
        print("Randomizing positions and angles")
        random_state = RandomState()
        sim.set_initial_positions_angles(random_state)

    if entropy_type is not None:
        sim.entropy_type = entropy_type
        print("Forcing entropy type: {}".format(sim.entropy_type))

    if entropy_target_value is not None:
        sim.entropy_target_value = entropy_target_value
        print("Forcing entropy target value: {}".format(
            sim.entropy_target_value))

    if concatenate is not None:
        sim.concatenate = concatenate == 'on'
        print("Forcing concatenation: {}".format(sim.concatenate))

    if collision_type is not None:
        sim.collision_type = collision_type
        sim.init_agents_pair()
        print("Forcing collision_type: {}".format(sim.collision_type))

    if isolation is not None:
        sim.isolation = isolation
        print("Forcing isolation to: {}".format(isolation))

    data_record_list = []
    genotype_idx_unsorted = evo.population_sorted_indexes[genotype_idx]
    random_seed = evo.pop_eval_random_seeds[genotype_idx_unsorted]

    if ghost_index is not None:
        assert ghost_index in [0, 1], 'ghost_index must be 0 or 1'
        # get original results without ghost condition and no random
        func_arguments['ghost_index'] = None
        func_arguments['random_pos_angle'] = False
        func_arguments['initial_distance'] = None
        func_arguments['write_data'] = None
        _, _, original_data_record_list = run_simulation_from_dir(
            **func_arguments)
        perf = sim.run_simulation(
            evo.population_unsorted,
            genotype_idx_unsorted,
            random_seed,
            data_record_list,
            ghost_index=ghost_index,
            original_data_record_list=original_data_record_list)
        print(
            "Overall Performance recomputed (non-ghost agent only): {}".format(
                perf))
    else:
        perf = sim.run_simulation(evo.population_unsorted,
                                  genotype_idx_unsorted, random_seed,
                                  data_record_list)
        if genotype_idx == 0:
            original_perfomance = evo.best_performances[-1]
            print("Original Performance: {}".format(original_perfomance))
        print("Overall Performance recomputed: {}".format(perf))

    if write_data:
        for s, data_record in enumerate(data_record_list, 1):
            if len(data_record_list) > 1:
                outdir = os.path.join(dir, 'data', 'sim_{}'.format(s))
            else:
                outdir = os.path.join(dir, 'data')
            utils.make_dir_if_not_exists(outdir)
            for t in range(sim.num_trials):
                for k, v in data_record.items():
                    if v is dict:
                        # summary
                        if t == 0:  # only once
                            outfile = os.path.join(outdir, '{}.json'.format(k))
                            utils.save_json_numpy_data(v, outfile)
                    elif len(v) != sim.num_trials:
                        # genotype/phenotype
                        outfile = os.path.join(outdir, '{}.json'.format(k))
                        utils.save_json_numpy_data(v, outfile)
                    elif len(v[0]) == 2:
                        # data for each agent
                        for a in range(2):
                            outfile = os.path.join(
                                outdir,
                                '{}_{}_{}.json'.format(k, t + 1, a + 1))
                            utils.save_json_numpy_data(v[t][a], outfile)
                    else:
                        # single data for both agent (e.g., distance)
                        outfile = os.path.join(outdir,
                                               '{}_{}.json'.format(k, t + 1))
                        utils.save_json_numpy_data(v[t], outfile)

    return evo, sim, data_record_list
def compute_std_from_random_runs(num_cores, num_good_runs,
                                 entropy_target_value):

    from dyadic_interaction.simulation import Simulation

    assert entropy_target_value in ['neural', 'distance', 'angle']

    genotype_structure = gen_structure.DEFAULT_GEN_STRUCTURE(num_neurons)
    gen_size = gen_structure.get_genotype_size(genotype_structure)

    num_data_points_per_agent_pair = sim_duration * num_trials
    num_data_points = num_data_points_per_agent_pair * num_good_runs  # 8 million!
    if entropy_target_value == 'distance':
        num_all_runs = num_good_runs * MULTIPLY_FACTOR
    else:
        num_all_runs = num_good_runs

    all_distances = np.zeros(num_data_points)
    rs = RandomState(seed)

    sim_array = [
        Simulation(
            entropy_type='shannon-dd',
            genotype_structure=genotype_structure,
        ) for _ in range(num_cores)
    ]

    random_genotypes = [
        Evolution.get_random_genotype(rs, gen_size * 2)
        for _ in range(num_all_runs)
    ]

    def run_one_core(r):
        data_record_list = []
        sim_array[r % num_cores].run_simulation(
            random_genotypes, r, data_record_list=data_record_list)
        data_record = data_record_list[0]
        if entropy_target_value == 'neural':
            concat_outputs = np.concatenate([
                data_record['brain_output'][t][a] for t in range(4)
                for a in range(2)
            ])
            concat_outputs = np.concatenate(
                [concat_outputs[:, c] for c in range(num_neurons)])
            return concat_outputs
        elif entropy_target_value == 'distance':
            concat_distances = np.concatenate(data_record['distance'])
            if any(concat_distances > MAX_DISTANCE):
                return None
            return concat_distances
        else:
            assert entropy_target_value == 'angle'
            concat_angles = np.concatenate([
                data_record['angle'][t][a] for t in range(4) for a in range(2)
            ])
            return concat_angles

    run_distances = Parallel(
        n_jobs=num_cores)(  # prefer="threads" does not work
            delayed(run_one_core)(r) for r in tqdm(range(num_all_runs)))
    good_run_distances = [run for run in run_distances if run is not None]
    print("Number of good runs: {}".format(len(good_run_distances)))
    assert len(good_run_distances) >= num_good_runs
    all_distances = np.concatenate(good_run_distances[:num_good_runs]
                                   )  # take only the first 1000 good runs

    # json.dump(
    #     all_distances,
    #     open('data/tmp_distances.json', 'w'),
    #     indent=3,
    #     cls=NumpyListJsonEncoder
    # )

    std = all_distances.std()
    print(std)
Esempio n. 20
0
    if args.num_random_pairings == 0:
        genotype_size *= 2  # two agents per genotype

    evo = Evolution(
        random_seed=args.seed,
        population_size=args.popsize,
        genotype_size=genotype_size,
        evaluation_function=sim.evaluate,
        performance_objective=args.perf_obj,
        fitness_normalization_mode=
        'NONE',  # 'NONE', FPS', 'RANK', 'SIGMA' -> NO NORMALIZATION
        selection_mode='UNIFORM',  # 'UNIFORM', 'RWS', 'SUS'
        reproduce_from_elite=True,
        reproduction_mode=
        'GENETIC_ALGORITHM',  # 'HILL_CLIMBING',  'GENETIC_ALGORITHM'
        mutation_variance=0.1,  # mutation noice with variance 0.1
        elitist_fraction=0.04,  # elite fraction of the top 4% solutions
        mating_fraction=0.96,  # the remaining mating fraction
        crossover_probability=0.1,
        crossover_mode='UNIFORM',
        crossover_points=None,  #genotype_structure['crossover_points'],
        folder_path=outdir,
        max_generation=args.num_gen,
        termination_function=None,
        checkpoint_interval=np.ceil(args.num_gen / 100),
    )
    evo.run()

    if args.entropy_type == 'transfer':
        # shutdown JVM
Esempio n. 21
0
def get_simulation_data_from_random_agent(gen_struct, rs, num_dim=1):
    from pyevolver.evolution import Evolution
    gen_size = gen_structure.get_genotype_size(gen_struct)
    random_genotype = Evolution.get_random_genotype(rs, gen_size)
    return get_simulation_data_from_agent(gen_struct, random_genotype, rs,
                                          num_dim)
Esempio n. 22
0
    args = parser.parse_args()

    dir = args.dir
    evo_files = sorted([f for f in os.listdir(dir) if f.startswith('evo_')])
    assert len(evo_files) > 0, "Can't find evo files in dir {}".format(dir)
    last_generation = evo_files[-1].split('_')[1].split('.')[0]
    file_num_zfill = len(last_generation)
    sim_json_filepath = os.path.join(dir, 'simulation.json')
    evo_json_filepath = os.path.join(dir,
                                     'evo_{}.json'.format(last_generation))

    assert args.max_gen > int(last_generation), \
        "max_gen is <= of the last available generation ({})".format(last_generation)

    sim = Simulation.load_from_file(sim_json_filepath)

    if args.cores > 0:
        sim.cores = args.cores

    evo = Evolution.load_from_file(evo_json_filepath,
                                   evaluation_function=sim.evaluate,
                                   max_generation=args.max_gen)

    t = TicToc()
    t.tic()

    evo.run()

    print('Ellapsed time: {}'.format(t.tocvalue()))
Esempio n. 23
0
def main(raw_args=None):
    parser = argparse.ArgumentParser(
        description='Run the Division of Labor Simulation'
    )

    # evolution arguments
    parser.add_argument('--seed', type=int, default=0, help='Random seed')
    parser.add_argument('--dir', type=str, default=None, help='Output directory')
    parser.add_argument('--perf_obj', default='MAX',
                        help='Performance objective')  # 'MAX', 'MIN', 'ZERO', 'ABS_MAX' or float value
    parser.add_argument('--gen_zfill', type=bool, default=False,
                        help='whether to fill geotipes with zeros (True) or random (false - default)')
    parser.add_argument('--popsize', type=int, default=96, help='Population size')
    parser.add_argument('--max_gen', type=int, default=10, help='Number of generations')

    # simulation arguments        
    parser.add_argument('--num_neurons', type=int, default=2, help='Number of neurons in agent')
    parser.add_argument('--num_dim', type=int, choices=[1, 2], default=1, help='Number of dimensions of the simulation')
    parser.add_argument('--num_trials', type=int, default=4, help='Number of trials')
    parser.add_argument('--trial_duration', type=int, default=50, help='Trial duration')
    parser.add_argument('--num_random_pairings', type=int, default=None,
                        help='None -> agents are alone in the simulation (default). '
                             '0    -> agents are evolved in pairs: a genotype contains a pair of agents. '
                             'n>0  -> each agent will go though a simulation with N other agents (randomly chosen).')
    parser.add_argument('--switch_agents_motor_control', type=bool, default=False,
                        help=
                        'when num_agents is 2 this decides whether the two agents switch control of L/R motors '
                        'in different trials (switch=True) or not (switch=False) in which case the first agent '
                        'always control the left motor and the second the right')
    parser.add_argument('--exclusive_motors_threshold', type=float, default=None,
                        help='prevent motors to run at the same time')
    parser.add_argument('--dual_population', type=bool, default=False,
                        help='If to evolve two separate populations, one always controlling the left '
                             'motor and the other the right')
    parser.add_argument('--cores', type=int, default=1, help='Number of cores')

    # Gather the provided arguements as an array.
    args = parser.parse_args(raw_args)

    t = TicToc()
    t.tic()

    genotype_structure = gen_structure.DEFAULT_GEN_STRUCTURE(args.num_dim, args.num_neurons)
        
    genotype_size = gen_structure.get_genotype_size(genotype_structure)

    if args.dir is not None:
        # create default path if it specified dir already exists
        if os.path.isdir(args.dir):
            subdir = '{}d_{}n'.format(args.num_dim, args.num_neurons)
            if args.exclusive_motors_threshold is not None:
                subdir += '_exc-{}'.format(args.exclusive_motors_threshold)
            if args.gen_zfill:
                subdir += '_zfill'
            if args.num_random_pairings is not None:
                subdir += '_rp-{}'.format(args.num_random_pairings)
            if args.switch_agents_motor_control:
                subdir += '_switch'
            if args.dual_population:
                subdir += '_dual'
            seed_dir = 'seed_{}'.format(str(args.seed).zfill(3))
            outdir = os.path.join(args.dir, subdir, seed_dir)
        else:
            # use the specified dir if it doesn't exist 
            outdir = args.dir
        utils.make_dir_if_not_exists_or_replace(outdir)
    else:
        outdir = None

    checkpoint_interval = int(np.ceil(args.max_gen / 10))

    sim = Simulation(
        genotype_structure=genotype_structure,
        num_dim=args.num_dim,
        num_trials=args.num_trials,
        trial_duration=args.trial_duration,  # the brain would iterate trial_duration/brain_step_size number of time
        num_random_pairings=args.num_random_pairings,
        switch_agents_motor_control=args.switch_agents_motor_control,
        exclusive_motors_threshold=args.exclusive_motors_threshold,
        dual_population=args.dual_population,
        num_cores=args.cores
    )

    if outdir is not None:
        sim_config_json = os.path.join(outdir, 'simulation.json')
        sim.save_to_file(sim_config_json)

    if args.num_random_pairings == 0:
        genotype_size *= 2  # two agents per genotype

    num_populations = 2 if args.dual_population else 1

    population = None  # by default randomly initialized in evolution

    if args.gen_zfill:
        # all genotypes initialized with zeros
        population = np.zeros(
            (num_populations, args.popsize, genotype_size)
        )

    evo = Evolution(
        random_seed=args.seed,
        population=population,
        num_populations=num_populations,
        population_size=args.popsize,
        genotype_size=genotype_size,
        evaluation_function=sim.evaluate,
        performance_objective=args.perf_obj,
        fitness_normalization_mode='FPS',  # 'NONE', 'FPS', 'RANK', 'SIGMA' -> NO NORMALIZATION
        selection_mode='RWS',  # 'UNIFORM', 'RWS', 'SUS'
        reproduce_from_elite=False,
        reproduction_mode='GENETIC_ALGORITHM',  # 'HILL_CLIMBING',  'GENETIC_ALGORITHM'
        mutation_variance=0.05,  # mutation noice with variance 0.1
        elitist_fraction=0.05,  # elite fraction of the top 4% solutions
        mating_fraction=0.95,  # the remaining mating fraction (consider leaving something for random fill)
        crossover_probability=0.1,
        crossover_mode='UNIFORM',
        crossover_points=None,  # genotype_structure['crossover_points'],
        folder_path=outdir,
        max_generation=args.max_gen,
        termination_function=None,
        checkpoint_interval=checkpoint_interval
    )
    print('Output path: ', outdir)
    print('n_elite, n_mating, n_filling: ', evo.n_elite, evo.n_mating, evo.n_fillup)
    evo.run()

    print('Ellapsed time: {}'.format(t.tocvalue()))

    return sim, evo
Esempio n. 24
0
def run_simulation_from_dir(dir, generation=None, genotype_idx=0, population_idx=0,
                            random_target_seed=None, random_pairing_seed=None, 
                            isolation_idx=None, write_data=False, **kwargs):
    """
    Utitity function to get data from a simulation
    """

    evo_files = sorted([f for f in os.listdir(dir) if f.startswith('evo_')])
    assert len(evo_files) > 0, "Can't find evo files in dir {}".format(dir)
    file_num_zfill = len(evo_files[0].split('_')[1].split('.')[0])
    if generation is None:
        evo_json_filepath = os.path.join(dir, evo_files[-1])
        generation = int(evo_files[-1].split('_')[1].split('.')[0])
    else:
        generation_str = str(generation).zfill(file_num_zfill)
        evo_json_filepath = os.path.join(dir, 'evo_{}.json'.format(generation_str))    
    sim_json_filepath = os.path.join(dir, 'simulation.json')    
    sim = Simulation.load_from_file(sim_json_filepath)
    evo = Evolution.load_from_file(evo_json_filepath, folder_path=dir)

    data_record_list = []

    random_seed = evo.pop_eval_random_seed

    expect_same_results = isolation_idx is None

    # overwriting simulaiton
    if random_target_seed is not None:
        print("Using random target")
        # standard target was initialized in sim.__post_init__
        # so this is going to overwrite it
        sim.init_target(RandomState(random_target_seed))
        expect_same_results = False
    if random_pairing_seed is not None:
        print("Setting random pairing with seed ", random_pairing_seed)
        random_seed = random_pairing_seed
        expect_same_results = False

    original_populations = evo.population_unsorted

    # get the indexes of the populations as they were before being sorted by performance
    # we only need to do this for the first population (index 0)
    original_genotype_idx = evo.population_sorted_indexes[population_idx][genotype_idx]

    performance, sim_perfs, _ = sim.run_simulation(
        original_populations,
        original_genotype_idx,
        random_seed,
        population_idx,
        isolation_idx,
        data_record_list
    )

    performance = sim.normalize_performance(performance)

    verbose = not kwargs.get('quiet', False)

    if verbose:
        if genotype_idx == 0:
            perf_orig = evo.best_performances[generation][population_idx]
            perf_orig = sim.normalize_performance(perf_orig)
            print("Performace original: {}".format(perf_orig))
        print("Performace recomputed: {}".format(performance))
        if expect_same_results:
            diff_perfomance = abs(perf_orig - performance)
            if diff_perfomance > 1e-5:
                print(f'Warning: diff_perfomance: {diff_perfomance}')
            # assert diff_perfomance < 1e-5, f'diff_perfomance: {diff_perfomance}'
        # if performance == perf_orig:
        #     print("Exact!!")

    if write_data:
        for s, data_record in enumerate(data_record_list, 1):
            if len(data_record_list) > 1:
                outdir = os.path.join(dir, 'data', 'sim_{}'.format(s))
            else:
                outdir = os.path.join(dir, 'data')
            utils.make_dir_if_not_exists_or_replace(outdir)
            for k, v in data_record.items():
                if type(v) is dict:
                    # summary
                    outfile = os.path.join(outdir, '{}.json'.format(k))
                    utils.save_json_numpy_data(v, outfile)
                else:
                    outfile = os.path.join(outdir, '{}.json'.format(k))
                    utils.save_json_numpy_data(v, outfile)

    
    if kwargs.get('select_sim', None) is None:
        # select best one
        sim_idx = np.argmax(sim_perfs)
        # if sim.num_random_pairings != None and sim.num_random_pairings > 0:
        if verbose:
            print("Best sim (random pairings)", sim_idx+1)
    else:
        sim_idx = kwargs['select_sim'] - 1  # zero based
        if verbose:
            print("Selecting simulation", sim_idx+1)

    if verbose:
        sim_perf = sim.normalize_performance(sim_perfs[sim_idx])
        print("Performance recomputed (sim): ",  sim_idx+1, sim_perf)
        if sim.num_agents == 2:
            print("Sim agents genotype distance: ", sim.agents_genotype_distance[sim_idx])
        # print agents signatures
        agents_sign = [get_numpy_signature(gt) for gt in data_record_list[sim_idx]['genotypes']]
        print('Agent(s) signature(s):', agents_sign) 


    if kwargs.get('compute_complexity', False):
        from dol.analyze_complexity import get_sim_agent_complexity
        for a in range(sim.num_agents):
            nc = get_sim_agent_complexity(
                sim_perfs, sim, data_record_list,
                agent_index=a,
                sim_idx=sim_idx,
                analyze_sensors=True,
                analyze_brain=True,
                analyze_motors=False,
                combined_complexity=False,
                only_part_n1n2=True,
                rs=RandomState(1)
            )
            print('TSE', a+1, nc)

    return performance, sim_perfs, evo, sim, data_record_list, sim_idx
def test_split_genotypes():
    dir = "data/2n_shannon-dd_neural_social_coll-edge/seed_001"
    evo_file = os.path.join(dir, "evo_2000.json")
    evo = Evolution.load_from_file(evo_file, folder_path=dir)
    get_similarity_matrix(evo.population)
    get_similarity_split(evo.population)