Esempio n. 1
0
def multislice_propagate_batch_numpy(grid_delta_batch, grid_beta_batch, probe_real, probe_imag, energy_ev, psize_cm, free_prop_cm=None, obj_batch_shape=None):

    minibatch_size = obj_batch_shape[0]
    grid_shape = obj_batch_shape[1:]
    voxel_nm = np.array([psize_cm] * 3) * 1.e7
    wavefront = np.zeros([minibatch_size, obj_batch_shape[1], obj_batch_shape[2]], dtype='complex64')
    wavefront += (probe_real + 1j * probe_imag)

    lmbda_nm = 1240. / energy_ev
    mean_voxel_nm = np.prod(voxel_nm) ** (1. / 3)
    size_nm = np.array(grid_shape) * voxel_nm

    n_slice = obj_batch_shape[-1]
    delta_nm = voxel_nm[-1]

    # h = get_kernel_ir(delta_nm, lmbda_nm, voxel_nm, grid_shape)
    h = get_kernel(delta_nm, lmbda_nm, voxel_nm, grid_shape)
    k = 2. * PI * delta_nm / lmbda_nm

    probe_array = []

    for i in range(n_slice):
        delta_slice = grid_delta_batch[:, :, :, i]
        beta_slice = grid_beta_batch[:, :, :, i]
        c = np.exp(1j * k * delta_slice) * np.exp(-k * beta_slice)
        wavefront = wavefront * c
        if i < n_slice - 1:
            wavefront = ifft2(np_ifftshift(np_fftshift(fft2(wavefront), axes=[1, 2]) * h, axes=[1, 2]))
        probe_array.append(wavefront)

    if free_prop_cm is not None:
        #1dxchange.write_tiff(abs(wavefront), '2d_1024/monitor_output/wv', dtype='float32', overwrite=True)
        if free_prop_cm == 'inf':
            wavefront = np_fftshift(fft2(wavefront), axes=[1, 2])
        else:
            dist_nm = free_prop_cm * 1e7
            l = np.prod(size_nm)**(1. / 3)
            crit_samp = lmbda_nm * dist_nm / l
            algorithm = 'TF' if mean_voxel_nm > crit_samp else 'IR'
            # print(algorithm)
            algorithm = 'TF'
            if algorithm == 'TF':
                h = get_kernel(dist_nm, lmbda_nm, voxel_nm, grid_shape)
                wavefront = ifft2(np_ifftshift(np_fftshift(fft2(wavefront), axes=[1, 2]) * h, axes=[1, 2]))
            else:
                h = get_kernel_ir(dist_nm, lmbda_nm, voxel_nm, grid_shape)
                wavefront = ifft2(np_ifftshift(np_fftshift(fft2(wavefront), axes=[1, 2]) * h, axes=[1, 2]))
            # dxchange.write_tiff(abs(wavefront), '2d_512/monitor_output/wv', dtype='float32', overwrite=True)
            # dxchange.write_tiff(np.angle(h), '2d_512/monitor_output/h', dtype='float32', overwrite=True)

    return wavefront, np.array(probe_array)
Esempio n. 2
0
def fresnel_propagate_numpy(wavefront, energy_ev, psize_cm, dist_cm):

    lmbda_nm = 1240. / energy_ev
    lmbda_cm = 0.000124 / energy_ev
    psize_nm = psize_cm * 1e7
    dist_nm = dist_cm * 1e7
    if dist_cm == 'inf':
        wavefront = np_fftshift(fft2(wavefront))
    else:
        n = np.mean(wavefront.shape)
        z_crit_cm = (psize_cm * n)**2 / (lmbda_cm * n)
        algorithm = 'TF' if dist_cm < z_crit_cm else 'IR'
        if algorithm == 'TF':
            h = get_kernel(dist_nm, lmbda_nm, [psize_nm, psize_nm],
                           wavefront.shape)
            wavefront = ifft2(np_ifftshift(np_fftshift(fft2(wavefront)) * h))
        else:
            h = get_kernel_ir(dist_nm, lmbda_nm, [psize_nm, psize_nm],
                              wavefront.shape)
            wavefront = np_ifftshift(ifft2(np_fftshift(fft2(wavefront)) * h))

    return wavefront
Esempio n. 3
0
def multidistance_ctf(prj_ls,
                      dist_cm_ls,
                      psize_cm,
                      energy_kev,
                      kappa=50,
                      sigma_cut=0.01,
                      alpha_1=5e-4,
                      alpha_2=1e-16):

    prj_ls = np.array(prj_ls)
    dist_cm_ls = np.array(dist_cm_ls)
    dist_nm_ls = dist_cm_ls * 1.e7
    lmbda_nm = 1.24 / energy_kev
    psize_nm = psize_cm * 1.e7
    prj_shape = prj_ls.shape[1:]

    u_max = 1. / (2. * psize_nm)
    v_max = 1. / (2. * psize_nm)
    u, v = gen_mesh([v_max, u_max], prj_shape)
    xi_mesh = PI * lmbda_nm * (u**2 + v**2)
    xi_ls = np.zeros([len(dist_cm_ls), *prj_shape])
    for i in range(len(dist_cm_ls)):
        xi_ls[i] = xi_mesh * dist_nm_ls[i]

    abs_nu = np.sqrt(u**2 + v**2)
    nu_cut = 0.6 * u_max
    f = 0.5 * (1 - erf((abs_nu - nu_cut) / sigma_cut))
    alpha = alpha_1 * f + alpha_2 * (1 - f)
    # plt.imshow(abs(np.log(np_fftshift(fft2(prj_ls[0] - 1, axes=(-2, -1)), axes=(-2, -1)))))
    # plt.imshow(alpha)
    # plt.show()
    # alpha = 0
    phase = np.sum(
        np_fftshift(fft2(prj_ls - 1, axes=(-2, -1)), axes=(-2, -1)) *
        (np.sin(xi_ls) + 1. / kappa * np.cos(xi_ls)),
        axis=0)
    phase /= (
        np.sum(2 * (np.sin(xi_ls) + 1. / kappa * np.cos(xi_ls))**2, axis=0) +
        alpha)
    phase = ifft2(np_ifftshift(phase, axes=(-2, -1)), axes=(-2, -1))

    return np.abs(phase)
def free_propagate_spherical_numpy(wavefront,
                                   dist_cm,
                                   r_cm,
                                   wavelen_nm,
                                   probe_size,
                                   theta_max=PI / 18,
                                   phi_max=PI / 18):

    dist_nm = dist_cm * 1.e7
    r_nm = r_cm * 1.e7
    k_theta = PI / theta_max * (np.arange(probe_size[0]) -
                                float(probe_size[0] - 1) / 2)
    k_phi = PI / phi_max * (np.arange(probe_size[1]) -
                            float(probe_size[1] - 1) / 2)
    k_phi, k_theta = np.meshgrid(k_phi, k_theta)
    k = 2 * PI / wavelen_nm
    wavefront = np_fftshift(fft2(wavefront), axes=[-1, -2])
    wavefront *= np.exp(-1j / (2 * k) * (k_theta**2 + k_phi**2) *
                        (1. / (r_nm + dist_nm) - 1. / r_nm))
    wavefront = ifft2(np_ifftshift(wavefront, axes=[-1, -2]))
    return wavefront