Esempio n. 1
0
    def test_next_fast_len_strict(self):
        strict_test_cases = {
            1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 11: 11, 13: 13,
            14: 14, 15: 15, 16: 16, 17: 18, 1021: 1024,

            # 2 * 3 * 5 * 7 * 11
            2310: 2310,
            2310 - 1: 2310,
            # 2 * 3 * 5 * 7 * 13
            2730: 2730,
            2730 - 1: 2730,
            # 2**2 * 3**2 * 5**2 * 7**2 * 11
            485100: 485100,
            485100-1: 485100,
            # 2**2 * 3**2 * 5**2 * 7**2 * 13
            573300: 573300,
            573300-1: 573300,

            # more than one multiple of 11 or 13 is not accepted
            # 2 * 3 * 5 * 7 * 11**2
            25410: 25872,
            # 2 * 3 * 5 * 7 * 13**2
            35490: 35672,
            # 2 * 3 * 5 * 7 * 11 * 13
            30030: 30576,

        }
        for x, y in strict_test_cases.items():
            assert_equal(pyfftw.next_fast_len(x), y)
Esempio n. 2
0
    def test_next_fast_len(self):
        def nums():
            for j in range(1, 1000):
                yield j
            yield 2**5 * 3**5 * 4**5 + 1

        for n in nums():
            m = pyfftw.next_fast_len(n)
            msg = "n=%d, m=%d" % (n, m)

            assert_(m >= n, msg)

            # check regularity
            k = m
            num11 = num13 = 0
            # These factors come from the description in the FFTW3 docs:
            #     http://fftw.org/fftw3_doc/Complex-DFTs.html#Complex-DFTs
            for d in [2, 3, 5, 7, 11, 13]:
                while True:
                    a, b = divmod(k, d)
                    if b == 0:
                        k = a
                        if d in [11, 13]:
                            # only allowed to match 11 or 13 once
                            if num11 > 0 or num13 > 0:
                                break
                            if d == 11:
                                num11 += 1
                            else:
                                num13 += 1
                    else:
                        break
            assert_equal(k, 1, err_msg=msg)
Esempio n. 3
0
    def test_next_fast_len(self):

        def nums():
            for j in range(1, 1000):
                yield j
            yield 2**5 * 3**5 * 4**5 + 1

        for n in nums():
            m = pyfftw.next_fast_len(n)
            msg = "n=%d, m=%d" % (n, m)

            assert_(m >= n, msg)

            # check regularity
            k = m
            num11 = num13 = 0
            # These factors come from the description in the FFTW3 docs:
            #     http://fftw.org/fftw3_doc/Complex-DFTs.html#Complex-DFTs
            for d in [2, 3, 5, 7, 11, 13]:
                while True:
                    a, b = divmod(k, d)
                    if b == 0:
                        k = a
                        if d in [11, 13]:
                            # only allowed to match 11 or 13 once
                            if num11 > 0 or num13 > 0:
                                break
                            if d == 11:
                                num11 += 1
                            else:
                                num13 += 1
                    else:
                        break
            assert_equal(k, 1, err_msg=msg)
Esempio n. 4
0
    def prepareFFTW(self, volumeSize):
        pyfftw.interfaces.cache.disable()

        fastLenghtT = pyfftw.next_fast_len(self.spaceSamples)
        fastLenghtV = pyfftw.next_fast_len(volumeSize)

        pyfftw.config.NUM_THREADS = cpu_count()
        pyfftw.config.PLANNER_EFFORT = 'FFTW_ESTIMATE'

        dataSize = (fastLenghtT, fastLenghtT, fastLenghtV)
        outputMatrixA = pyfftw.empty_aligned(dataSize,
                                             dtype='complex128',
                                             n=16)
        outputMatrixB = pyfftw.empty_aligned(dataSize,
                                             dtype='complex128',
                                             n=16)

        return outputMatrixA, outputMatrixB
 def pwr2345(n):
     # If pyfftw has been installed, next_fast_len would return the len of best performance
     try:
         import pyfftw
         best = pyfftw.next_fast_len(n)
     except ImportError:
         number = numpy.array([2, 3, 4, 5])
         ex = numpy.ceil(numpy.log(n) / numpy.log(number)).astype('int')
         best = min(numpy.power(number[:], ex[:]))
     return best
Esempio n. 6
0
def padrightside(nbins):
    """
    Returns pad_width for padding at the right side given a value of ``nbins``
    The pad_width is calculated with ``next_fast_len`` function from `PyFFTW` package
    """
    # ~ nextPower = nextpoweroftwo(nbins)
    # ~ nextPower = nextpow2(nbins)
    # ~ nextPower = fftpack.next_fast_len(nbins)
    nextPower = pyfftw.next_fast_len(nbins)
    deficit = int(nextPower - nbins)
    # ~ deficit = int(np.power(2, nextPower) - nbins)
    return deficit
Esempio n. 7
0
 def fft_convergence(self, max_res, n_res, N, period, n_iter=3):
     N = to_vec2(N)
     max_res = to_vec2(max_res)
     res = bm.Vector2d(np.logspace(np.log(2 * N.x - 1),
         np.log(max_res.x), n_res + 1, base=np.e),
         np.logspace(np.log(2 * N.y - 1),
             np.log(max_res.y), n_res + 1, base=np.e))
     DT = np.zeros(n_res)
     D = np.zeros(n_res)
     self.resolution = res[0]
     size = period * self.resolution
     size.x = next_fast_len(int(size.x))
     size.y = next_fast_len(int(size.y))
     self.resolution = size / period
     _, grid = self.grid(period=period, feature='eps')
     self.__ffts(grid, N)
     for i, r in enumerate(res[1:]):
         EPS = self._fft_eps.copy()
         EPSxy = self._fft_eps_ix.copy()
         EPSyx = self._fft_eps_iy.copy()
         self.resolution = r
         size = period * self.resolution
         size.x = next_fast_len(int(size.x))
         size.y = next_fast_len(int(size.y))
         self.resolution = size / period
         _, grid = self.grid(period=period, feature='eps')
         t0 = time.time()
         for _ in range(n_iter):
             self.__ffts(grid, N)
         t1 = time.time()
         DT[i] = (t1 - t0) / n_iter
         d_eps = la.norm(self._fft_eps - EPS)
         d_eps_x = la.norm(self._fft_eps_ix - EPSxy)
         d_eps_y = la.norm(self._fft_eps_iy - EPSyx)
         D[i] = max(d_eps, d_eps_x, d_eps_y)
         print("Sim " + str(i + 1) + ": res = " + str(r)
                 + "\nTime = " + str(round(DT[i], 3))
                 + ", diff = " + str(round(D[i], 5)))
     return (D, DT)
Esempio n. 8
0
 def compute_eigs(self, freq, k, period, N):
     N_t = N.x * N.y
     if (self.period != period or self.N != N
             or self.freq != freq or self.k != k):
         if self.period != period or self.N != N or self.dispersive:
             if self.resolution:
                 size = period * self.resolution
                 size.x = next_fast_len(int(size.x))
                 size.y = next_fast_len(int(size.y))
                 res = size / period
             else:
                 size = (2 * N - 1)
                 size.x = next_fast_len(int(size.x))
                 size.y = next_fast_len(int(size.y))
                 res = size / period
             if not self.shapes:
                 self._fft_eps = self.material.get('eps', freq) *\
                         np.eye(N_t)
                 self._fft_eps_ix = self.material.get('eps', freq) *\
                         np.eye(N_t)
                 self._fft_eps_iy = self.material.get('eps', freq) *\
                         np.eye(N_t)
             else:
                 _, grid = self.grid(res, period, freq, 'eps')
                 self.__ffts(grid, N)
             self._res = res
             self._period = period
             self._N = N
         k0 = 2 * np.pi * freq
         m = bm.Vector2d(np.arange(-(N.x // 2), N.x // 2 + 1,
             dtype=int), np.arange(-(N.y // 2), N.y // 2 + 1,
                 dtype=int))
         ki = k0 * k + 2 * np.pi * m / period
         K = 1j * ki.grid().flatten().diag() / k0
         self.__eigs(freq, K)
         self._k = k
    def __init__(self, len1: int, len2: int, fftw_threads: int = 5):
        # Check that input sizes are compatible with 'valid' mode
        self.switch_inputs = len2 > len1
        if self.switch_inputs:
            len1, len2 = len2, len1

        self.len1 = len1
        self.len2 = len2

        # Speed up FFT by zero-padding to optimal size for FFTW
        self.fast_len = pyfftw.next_fast_len(len1 + len2 - 1)
        self.padding_in1 = np.zeros(self.fast_len - self.len1)
        self.padding_in2 = np.zeros(self.fast_len - self.len2)

        # Compute the slice containing the valid convolution results
        self.valid_len = len1 - len2 + 1
        idx_start = (2 * len2 - 2) // 2
        self.valid_slice = slice(idx_start, idx_start + self.valid_len)

        # Create the FFTW plans
        # fmt: off
        fast_len2 = self.fast_len // 2 + 1
        self._rfft_in1 = pyfftw.empty_aligned(self.fast_len, dtype="float64")
        self._rfft_in2 = pyfftw.empty_aligned(self.fast_len, dtype="float64")
        self._rfft_out1 = pyfftw.empty_aligned(fast_len2, dtype="complex128")
        self._rfft_out2 = pyfftw.empty_aligned(fast_len2, dtype="complex128")
        self._irfft_in = pyfftw.empty_aligned(fast_len2, dtype="complex128")
        self._irfft_out = pyfftw.empty_aligned(self.fast_len, dtype="float64")
        # fmt: on

        print("Creating FFTW plans for convolution...", end="")
        sys.stdout.flush()

        p = {
            "flags": ("FFTW_MEASURE", "FFTW_DESTROY_INPUT"),
            "threads": fftw_threads,
        }
        self._fftw_rfft1 = pyfftw.FFTW(self._rfft_in1, self._rfft_out1, **p)
        self._fftw_rfft2 = pyfftw.FFTW(self._rfft_in2, self._rfft_out2, **p)
        self._fftw_irfft = pyfftw.FFTW(
            self._irfft_in,
            self._irfft_out,
            direction="FFTW_BACKWARD",
            **p,
        )

        print(" done.")
    def __init__(self, len_in1, len_in2):

        # Check that input sizes are compatible with 'valid' mode
        self.switch_inputs = (len_in2 > len_in1)
        if self.switch_inputs:
            len_in1, len_in2 = len_in2, len_in1

        self.len_in1 = len_in1
        self.len_in2 = len_in2

        # Speed up FFT by zero-padding to optimal size for FFTW
        self.shape = len_in1 + len_in2 - 1
        self.fshape = pyfftw.next_fast_len(self.shape)

        self.zero_pad_in1 = np.zeros(self.fshape - self.len_in1)
        self.zero_pad_in2 = np.zeros(self.fshape - self.len_in2)

        # Valid convolve results
        self.newshape = len_in1 - len_in2 + 1
        idx_start = (2 * len_in2 - 2) // 2
        self.valid_slice = slice(idx_start, idx_start + self.newshape)

        # Prepare the FFTW plans
        fshape_2 = self.fshape // 2 + 1
        self._rfft_in1 = pyfftw.empty_aligned(self.fshape, dtype='float64')
        self._rfft_out1 = pyfftw.empty_aligned(fshape_2, dtype='complex128')

        self._rfft_in2 = pyfftw.empty_aligned(self.fshape, dtype='float64')
        self._rfft_out2 = pyfftw.empty_aligned(fshape_2, dtype='complex128')

        self._irfft_in = pyfftw.empty_aligned(fshape_2, dtype='complex128')
        self._irfft_out = pyfftw.empty_aligned(self.fshape, dtype='float64')

        print("Creating FFTW plans for convolution...", end="")
        flags = ('FFTW_MEASURE', 'FFTW_DESTROY_INPUT')
        self._fftw_rfft1 = pyfftw.FFTW(self._rfft_in1,
                                       self._rfft_out1,
                                       flags=flags)
        self._fftw_rfft2 = pyfftw.FFTW(self._rfft_in2,
                                       self._rfft_out2,
                                       flags=flags)
        self._fftw_irfft = pyfftw.FFTW(self._irfft_in,
                                       self._irfft_out,
                                       direction='FFTW_BACKWARD',
                                       flags=flags)
        print(" done.")
Esempio n. 11
0
    def test_next_fast_len_strict(self):
        strict_test_cases = {
            1: 1,
            2: 2,
            3: 3,
            4: 4,
            5: 5,
            6: 6,
            7: 7,
            8: 8,
            11: 11,
            13: 13,
            14: 14,
            15: 15,
            16: 16,
            17: 18,
            1021: 1024,

            # 2 * 3 * 5 * 7 * 11
            2310: 2310,
            2310 - 1: 2310,
            # 2 * 3 * 5 * 7 * 13
            2730: 2730,
            2730 - 1: 2730,
            # 2**2 * 3**2 * 5**2 * 7**2 * 11
            485100: 485100,
            485100 - 1: 485100,
            # 2**2 * 3**2 * 5**2 * 7**2 * 13
            573300: 573300,
            573300 - 1: 573300,

            # more than one multiple of 11 or 13 is not accepted
            # 2 * 3 * 5 * 7 * 11**2
            25410: 25872,
            # 2 * 3 * 5 * 7 * 13**2
            35490: 35672,
            # 2 * 3 * 5 * 7 * 11 * 13
            30030: 30576,
        }
        for x, y in strict_test_cases.items():
            assert_equal(pyfftw.next_fast_len(x), y)
Esempio n. 12
0
import pyfftw
import numpy
import time
import scipy
from multiprocessing import cpu_count

#pyfftw.forget_wisdom()
pyfftw.interfaces.cache.disable()

mainDataSize = 1024
volumeSize = 20

fastLenghtT = pyfftw.next_fast_len(mainDataSize)
fastLenghtV = pyfftw.next_fast_len(volumeSize)

pyfftw.config.NUM_THREADS = cpu_count()
pyfftw.config.PLANNER_EFFORT = 'FFTW_ESTIMATE'

print(fastLenghtT)
print(fastLenghtV)

dataSize = (fastLenghtV, fastLenghtT, fastLenghtT)

f = pyfftw.empty_aligned(dataSize, dtype='complex128', n=16)
f[:] = numpy.random.randn(*f.shape) + 1j * numpy.random.randn(*f.shape)

tas = time.time()
fftf = pyfftw.interfaces.numpy_fft.fftn(
    f)  # here the plan is applied, nothing else.
tas = time.time() - tas
print("3D FFT, pyfftw:", tas)
Esempio n. 13
0
    def _plan_fftw_convolve(loads: np.ndarray, im: np.ndarray, domain: np.ndarray, circular: typing.Sequence[bool]):
        """Plans an FFT convolution, returns a function to carry out the convolution
        FFTW implementation

        Parameters
        ----------
        loads: np.ndarray
            An example of a loads array, this is not altered or stored
        im: np.ndarray
            The influence matrix component for the transformation, this is not altered but it's fft is stored to
            save time during convolution, this must be larger in every dimension than the loads array
        domain: np.ndarray, optional (None)
            Array with same shape as loads filled with boolean values. If supplied this function will return a
            function which first fills the supplied loads into the domain then computes the convolution.
            This is typically used for finding loads from set displacements as the displacements are often not set
            over the whole surface.
        circular: Sequence[bool]
            If True the circular convolution will be calculated, to be used for periodic simulations

        Returns
        -------
        function
            A function which takes a single input of loads and returns the result of the convolution with the original
            influence matrix. If a domain was not supplied the input to the returned function must be exactly the same
            shape as the loads array used in this function. If a domain was specified the length of the loads input to
            the returned function must be the same as the number of non zero elements in domain.

        Notes
        -----
        This function uses FFTW, if you want to use the CUDA implementation make sure that cupy is installed and
        importable. If cupy can be imported slippy will use the CUDA implementations by default

        Examples
        --------
        >>> import numpy as np
        >>> import slippy.contact as c
        >>> result = c.hertz_full([1,1], [np.inf, np.inf], [200e9, 200e9], [0.3, 0.3], 1e4)
        >>> X,Y = np.meshgrid(*[np.linspace(-0.005,0.005,256)]*2)
        >>> grid_spacing = X[1][1]-X[0][0]
        >>> loads = result['pressure_f'](X,Y)
        >>> disp_analytical = result['surface_displacement_b_f'][0](X,Y)['uz']
        >>> im = c.elastic_influence_matrix('zz', (512,512), (grid_spacing,grid_spacing), 200e9/(2*(1+0.3)), 0.3)
        >>> convolve_func = plan_convolve(loads, im, None, [False, False])
        >>> disp_numerical = convolve_func(loads)

        """
        loads = np.asarray(loads)
        im = np.asarray(im)
        im_shape_orig = im.shape
        if domain is not None:
            domain = np.asarray(domain, dtype=np.bool)
        input_shape = []
        for i in range(2):
            if circular[i]:
                assert loads.shape[i] == im.shape[i], "For circular convolution loads and im must be same shape"
                input_shape.append(loads.shape[i])
            else:
                input_shape.append(2 * pyfftw.next_fast_len(max(loads.shape[i], im.shape[i])))
        input_shape = tuple(input_shape)

        fft_shape = [input_shape[0], input_shape[1] // 2 + 1]
        in_empty = pyfftw.empty_aligned(input_shape, dtype=loads.dtype)
        out_empty = pyfftw.empty_aligned(fft_shape, dtype='complex128')
        ret_empty = pyfftw.empty_aligned(input_shape, dtype=loads.dtype)
        forward_trans = pyfftw.FFTW(in_empty, out_empty, axes=(0, 1),
                                    direction='FFTW_FORWARD', threads=slippy.CORES)
        backward_trans = pyfftw.FFTW(out_empty, ret_empty, axes=(0, 1),
                                     direction='FFTW_BACKWARD', threads=slippy.CORES)
        norm_inv = forward_trans.N ** 0.5
        norm = 1 / norm_inv

        shape_diff = [[0, (b - a)] for a, b in zip(im.shape, input_shape)]
        im = np.pad(im, shape_diff, 'constant')
        im = np.roll(im, tuple(-((sz - 1) // 2) for sz in im_shape_orig), (-2, -1))
        fft_im = forward_trans(im) * norm

        shape_diff_loads = [[0, (b - a)] for a, b in zip(loads.shape, input_shape)]

        shape = loads.shape
        dtype = loads.dtype

        def inner_no_domain(full_loads):
            if full_loads.shape == shape:
                flat = False
            else:
                full_loads = np.reshape(full_loads, loads.shape)
                flat = True
            loads_pad = np.pad(full_loads, shape_diff_loads, 'constant')
            full = backward_trans(forward_trans(loads_pad) * fft_im)
            full = norm_inv * full[:full_loads.shape[0], :full_loads.shape[1]]
            if flat:
                full = full.flatten()
            return full

        def inner_with_domain(sub_loads, ignore_domain=False):
            full_loads = np.zeros(shape, dtype=dtype)
            full_loads[domain] = sub_loads
            loads_pad = np.pad(full_loads, shape_diff_loads, 'constant')
            full = backward_trans(forward_trans(loads_pad) * fft_im)
            same = norm_inv * full[:full_loads.shape[0], :full_loads.shape[1]]
            if ignore_domain:
                return same
            return same[domain]

        if domain is None:
            return inner_no_domain
        else:
            return inner_with_domain
    def from_function(cls, corr_func, shape, is_cyclic=True):
        """Create an instance to apply the correlation function.

        Parameters
        ----------
        corr_func: callable(dist) -> float
            The correlation of the first element of the domain with
            each other element.
        shape: tuple of int
            The state is formally a vector, but the correlations are
            assumed to depend on the layout in some other shape,
            usually related to the physical layout. This is the other
            shape.
        is_cyclic: bool
            Whether to assume the domain is periodic in all directions.

        Returns
        -------
        HomogeneousIsotropicCorrelation
        """
        shape = np.atleast_1d(shape)
        if is_cyclic:
            computational_shape = tuple(shape)
        else:
            computational_shape = tuple(
                next_fast_len(2 * dim - 1) for dim in shape)

        self = cls(tuple(shape), computational_shape)
        shape = np.asarray(self._computational_shape)
        ndims = len(shape)

        broadcastable_shape = shape[:, newaxis]
        while broadcastable_shape.ndim < ndims + 1:
            broadcastable_shape = broadcastable_shape[..., newaxis]

        def corr_from_index(*index):
            """Correlation of index with zero.

            Turns a correlation function in terms of index distance
            into one in terms of indices on a periodic domain.

            Parameters
            ----------
            index: tuple of int

            Returns
            -------
            float[-1, 1]
                The correlation of the given index with the origin.

            See Also
            --------
            DistanceCorrelationFunction.correlation_from_index
            """
            comp2_1 = square(index)
            # Components of distance to shifted origin
            comp2_2 = square(broadcastable_shape - index)
            # use the smaller components to get the distance to the
            # closest of the shifted origins
            comp2 = fmin(comp2_1, comp2_2)
            return corr_func(sqrt(array_sum(comp2, axis=0)))

        corr_struct = fromfunction(corr_from_index,
                                   shape=tuple(shape),
                                   dtype=DTYPE)

        # I should be able to generate this sequence with a type-I DCT
        # For some odd reason complex/complex is faster than complex/real
        # This also ensures the format here is the same as in _matmat
        corr_fourier = rfftn(corr_struct,
                             axes=arange(ndims, dtype=int),
                             threads=NUM_THREADS,
                             planner_effort=ADVANCE_PLANNER_EFFORT)
        self._corr_fourier = (corr_fourier)

        # This is also affected by roundoff
        abs_corr_fourier = abs(corr_fourier)
        self._fourier_near_zero = (abs_corr_fourier <
                                   FOURIER_NEAR_ZERO * abs_corr_fourier.max())
        return self