Esempio n. 1
0
    def _getdata(self, keys):
        out = []
        naxis = len(self.hdu.shape)

        # Determine the number of slices in the set of input keys.
        # If there is only one slice then the result is a one dimensional
        # array, otherwise the result will be a multidimensional array.
        numSlices = 0
        for idx, key in enumerate(keys):
            if isinstance(key, slice):
                numSlices = numSlices + 1

        for idx, key in enumerate(keys):
            if isinstance(key, slice):
                # OK, this element is a slice so see if we can get the data for
                # each element of the slice.
                axis = self.hdu.shape[idx]
                ns = _normalize_slice(key, axis)

                for k in range(ns.start, ns.stop):
                    key1 = list(keys)
                    key1[idx] = k
                    key1 = tuple(key1)

                    if numSlices > 1:
                        # This is not the only slice in the list of keys so
                        # we simply get the data for this section and append
                        # it to the list that is output.  The out variable will
                        # be a list of arrays.  When we are done we will pack
                        # the list into a single multidimensional array.
                        out.append(self[key1])
                    else:
                        # This is the only slice in the list of keys so if this
                        # is the first element of the slice just set the output
                        # to the array that is the data for the first slice.
                        # If this is not the first element of the slice then
                        # append the output for this slice element to the array
                        # that is to be output.  The out variable is a single
                        # dimensional array.
                        if k == ns.start:
                            out = self[key1]
                        else:
                            out = np.append(out, self[key1])

                # We have the data so break out of the loop.
                break

        if isinstance(out, list):
            out = np.array(out)

        return out
Esempio n. 2
0
def _iswholeline(indx, naxis):
    if _is_int(indx):
        if indx >= 0 and indx < naxis:
            if naxis > 1:
                return _SinglePoint(1, indx)
            elif naxis == 1:
                return _OnePointAxis(1, 0)
        else:
            raise IndexError('Index %s out of range.' % indx)
    elif isinstance(indx, slice):
        indx = _normalize_slice(indx, naxis)
        if (indx.start == 0) and (indx.stop == naxis) and (indx.step == 1):
            return _WholeLine(naxis, 0)
        else:
            if indx.step == 1:
                return _LineSlice(indx.stop - indx.start, indx.start)
            else:
                return _SteppedSlice((indx.stop - indx.start) // indx.step,
                                     indx.start)
    else:
        raise IndexError('Illegal index %s' % indx)