def main(): apb = ArgumentParserBuilder() apb.add_opts( opt('--dataset', type=Path, default='data/kaggle-lit-review-0.1.json'), opt('--method', required=True, type=str, choices=METHOD_CHOICES), opt('--model-name', type=str), opt('--split', type=str, default='nq', choices=('nq', 'kq')), opt('--batch-size', '-bsz', type=int, default=96), opt('--device', type=str, default='cuda:0'), opt('--tokenizer-name', type=str), opt('--do-lower-case', action='store_true'), opt('--metrics', type=str, nargs='+', default=metric_names(), choices=metric_names())) args = apb.parser.parse_args() options = KaggleEvaluationOptions(**vars(args)) ds = LitReviewDataset.from_file(str(options.dataset)) examples = ds.to_senticized_dataset(SETTINGS.cord19_index_path, split=options.split) construct_map = dict(transformer=construct_transformer, bm25=construct_bm25, t5=construct_t5, seq_class_transformer=construct_seq_class_transformer, qa_transformer=construct_qa_transformer, random=lambda _: RandomReranker()) reranker = construct_map[options.method](options) evaluator = RerankerEvaluator(reranker, options.metrics) width = max(map(len, args.metrics)) + 1 stdout = [] for metric in evaluator.evaluate(examples): logging.info(f'{metric.name:<{width}}{metric.value:.5}') stdout.append(f'{metric.name}\t{metric.value}') print('\n'.join(stdout))
def main(): apb = ArgumentParserBuilder() apb.add_opts(opt('--task', type=str, default='msmarco'), opt('--dataset', type=Path, required=True), opt('--index-dir', type=Path, required=True), opt('--method', required=True, type=str, choices=METHOD_CHOICES), opt('--model', required=True, type=str, help='Path to pre-trained model or huggingface model name'), opt('--output-file', type=Path, default='.'), opt('--overwrite-output', action='store_true'), opt('--split', type=str, default='dev', choices=('dev', 'eval')), opt('--batch-size', '-bsz', type=int, default=96), opt('--device', type=str, default='cuda:0'), opt('--is-duo', action='store_true'), opt('--from-tf', action='store_true'), opt('--metrics', type=str, nargs='+', default=metric_names(), choices=metric_names()), opt('--model-type', type=str), opt('--tokenizer-name', type=str), opt('--seg-size', type=int, default=10), opt('--seg-stride', type=int, default=5), opt('--aggregate-method', type=str, default="max")) args = apb.parser.parse_args() options = DocumentRankingEvaluationOptions(**vars(args)) logging.info("Preprocessing Queries & Docs:") ds = MsMarcoDataset.from_folder(str(options.dataset), split=options.split, is_duo=options.is_duo) examples = ds.to_relevance_examples(str(options.index_dir), is_duo=options.is_duo) logging.info("Loading Ranker & Tokenizer:") construct_map = dict(transformer=construct_transformer, bm25=construct_bm25, t5=construct_t5, seq_class_transformer=construct_seq_class_transformer, random=lambda _: RandomReranker()) reranker = construct_map[options.method](options) writer = MsMarcoWriter(args.output_file, args.overwrite_output) evaluator = RerankerEvaluator(reranker, options.metrics, writer=writer) width = max(map(len, args.metrics)) + 1 logging.info("Reranking:") for metric in evaluator.evaluate_by_segments(examples, options.seg_size, options.seg_stride, options.aggregate_method): logging.info(f'{metric.name:<{width}}{metric.value:.5}')
def main(): apb = ArgumentParserBuilder() apb.add_opts(opt('--dataset', type=str, default='msmarco'), opt('--data-dir', type=Path, default='/content/data/msmarco'), opt('--method', required=True, type=str, choices=METHOD_CHOICES), opt('--model-name-or-path', type=str), opt('--output-file', type=Path, default='.'), opt('--overwrite-output', action='store_true'), opt('--split', type=str, default='dev', choices=('dev', 'eval')), opt('--batch-size', '-bsz', type=int, default=96), opt('--device', type=str, default='cuda:0'), opt('--is-duo', action='store_true'), opt('--metrics', type=str, nargs='+', default=metric_names(), choices=metric_names()), opt('--model-type', type=str, default='bert-base'), opt('--tokenizer-name', type=str), opt('--index-dir', type=Path)) args = apb.parser.parse_args() options = PassageRankingEvaluationOptions(**vars(args)) ds = MsMarcoDataset.from_folder(str(options.data_dir), split=options.split, is_duo=options.is_duo) examples = ds.to_relevance_examples(SETTINGS.msmarco_index_path, is_duo=options.is_duo) construct_map = dict(transformer=construct_transformer, bm25=construct_bm25, t5=construct_t5, seq_class_transformer=construct_seq_class_transformer, random=lambda _: RandomReranker()) reranker = construct_map[options.method](options) writer = MsMarcoWriter(args.output_file, args.overwrite_output) evaluator = RerankerEvaluator(reranker, options.metrics, writer=writer) width = max(map(len, args.metrics)) + 1 stdout = [] for metric in evaluator.evaluate(examples): logging.info(f'{metric.name:<{width}}{metric.value:.5}') stdout.append(f'{metric.name}\t{metric.value}') print('\n'.join(stdout))
def main(): apb = ArgumentParserBuilder() apb.add_opts(opt('--dataset', type=Path, required=True), opt('--index-dir', type=Path, required=True), opt('--method', required=True, type=str, choices=METHOD_CHOICES), opt('--model-name', type=str), opt('--split', type=str, default='nq', choices=('nq', 'kq')), opt('--batch-size', '-bsz', type=int, default=96), opt('--device', type=str, default='cuda:0'), opt('--tokenizer-name', type=str), opt('--do-lower-case', action='store_true'), opt('--metrics', type=str, nargs='+', default=metric_names(), choices=metric_names())) args = apb.parser.parse_args() options = KaggleEvaluationOptions(**vars(args)) ds = LitReviewDataset.from_file(str(options.dataset)) examples = ds.to_senticized_dataset(str(options.index_dir), split=options.split) construct_map = dict(transformer=construct_transformer, bm25=construct_bm25, t5=construct_t5, seq_class_transformer=construct_seq_class_transformer, qa_transformer=construct_qa_transformer, random=lambda _: RandomReranker()) reranker = construct_map[options.method](options) evaluator = RerankerEvaluator(reranker, options.metrics) width = max(map(len, args.metrics)) + 1 stdout = [] import time start = time.time() with open(f'{options.model_name.replace("/","_")}.csv', 'w') as fd: logging.info('writing %s.csv', options.model_name) for metric in evaluator.evaluate(examples): logging.info(f'{metric.name:<{width}}{metric.value:.5}') stdout.append(f'{metric.name}\t{metric.value:.3}') fd.write(f"{metric.name}\t{metric.value:.3}\n") end = time.time() fd.write(f"time\t{end-start:.3}\n") print('\n'.join(stdout))
def main(): apb = ArgumentParserBuilder() apb.add_opts( opt('--task', type=str, default='msmarco'), opt('--dataset', type=Path, required=True), opt('--index-dir', type=Path, required=True), opt('--method', required=True, type=str, choices=METHOD_CHOICES), opt('--model', required=True, type=str, help='Path to pre-trained model or huggingface model name'), opt('--duo_model', type=str, default='', help='Path to pre-trained model or huggingface model name'), opt('--mono_hits', type=int, default=50, help='Top k candidates from mono for duo reranking'), opt('--output-file', type=Path, default='.'), opt('--mono-cache-write-path', type=Path, default='.', help='Path to write the mono run file cache'), opt('--mono-cache-load-path', type=Path, default='.', help='Path to the mono run file cache that will be loaded'), opt('--overwrite-output', action='store_true'), opt('--split', type=str, default='dev', choices=('dev', 'eval')), opt('--batch-size', '-bsz', type=int, default=96), opt('--device', type=str, default='cuda:0'), opt('--is-duo', action='store_true'), opt('--from-tf', action='store_true'), opt('--metrics', type=str, nargs='+', default=metric_names(), choices=metric_names()), opt('--model-type', type=str), opt('--tokenizer-name', type=str)) args = apb.parser.parse_args() options = PassageRankingEvaluationOptions(**vars(args)) logging.info("Preprocessing Queries & Passages:") skip_mono = os.path.isfile(args.mono_cache_load_path) ds = MsMarcoDataset.from_folder(str(options.dataset), split=options.split, is_duo=options.is_duo, run_path=args.mono_cache_load_path) examples = ds.to_relevance_examples(str(options.index_dir), is_duo=options.is_duo) logging.info("Loading Ranker & Tokenizer:") construct_map = dict(transformer=construct_transformer, bm25=construct_bm25, t5=construct_t5, duo_t5=construct_duo_t5, seq_class_transformer=construct_seq_class_transformer, random=lambda _: RandomReranker()) reranker = construct_map[options.method](options) writer = MsMarcoWriter(args.output_file, args.overwrite_output) if options.method == 'duo_t5': evaluator = DuoRerankerEvaluator( mono_reranker=reranker[0], duo_reranker=reranker[1], metric_names=options.metrics, mono_hits=options.mono_hits, writer=writer, mono_cache_write_path=args.mono_cache_write_path, skip_mono=skip_mono) else: evaluator = RerankerEvaluator(reranker, options.metrics, writer=writer) width = max(map(len, args.metrics)) + 1 logging.info("Reranking:") for metric in evaluator.evaluate(examples): logging.info(f'{metric.name:<{width}}{metric.value:.5}')
def main(): apb = ArgumentParserBuilder() apb.add_opts(opt('--task', type=str, default='trec-covid', help='A string correspondding to the task to execute. By default, this is "trec-covid".'), opt('--dataset', type=Path, required=True, help='Path to the directory containing the topics file, qrels file, and run file.'), opt('--index-dir', type=Path, required=True, help='Path to the input Anserini index.'), opt('--method', required=True, type=str, choices=METHOD_CHOICES, help='Specifies the type of reranker to use.'), opt('--model', required=True, type=str, help='Path to pre-trained model or huggingface model name.'), opt('--output-file', type=Path, default='.', help='A path to the output file.'), opt('--overwrite-output', action='store_true', help='If set to true, output will be overwritten if the output file already exists. Otherwise, ' 'output will be appended to the existing file.'), opt('--batch-size', '-bsz', type=int, default=96, help='The batch size for tokenization.'), opt('--device', type=str, default='cuda:0', help='The CUDA device to use for reranking.'), opt('--from-tf', action='store_true', help='A boolean of whether the pretrained model is being loaded from a Tensorflow checkpoint. ' 'If flag is unused, assumed to be false.'), opt('--metrics', type=str, nargs='+', default=metric_names(), choices=metric_names(), help='The list of metrics to collect while evaluating the reranker.'), opt('--model-type', type=str, help='The T5 tokenizer name.'), opt('--tokenizer-name', type=str, help='The name of the tokenizer to pull from huggingface using the AutoTokenizer class. If ' 'left empty, this will be set to the model name.'), opt('--seg-size', type=int, default=10, help='The number of sentences in each segment. For example, given a document with sentences' '[1,2,3,4,5], a seg_size of 3, and a stride of 2, the document will be broken into segments' '[[1, 2, 3], [3, 4, 5], and [5]].'), opt('--seg-stride', type=int, default=5, help='The number of sentences to increment between each segment. For example, given a document' 'with sentences [1,2,3,4,5], a seg_size of 3, and a stride of 2, the document will be broken into' 'segments [[1, 2, 3], [3, 4, 5], and [5]].'), opt('--aggregate-method', type=str, default="max", help='Aggregation method for combining scores across sentence segments of the same document.')) args = apb.parser.parse_args() options = DocumentRankingEvaluationOptions(**vars(args)) logging.info("Preprocessing Queries & Docs:") ds = TRECCovidDataset.from_folder(str(options.dataset)) examples = ds.to_relevance_examples(str(options.index_dir)) logging.info("Loading Ranker & Tokenizer:") construct_map = dict(transformer=construct_transformer, bm25=construct_bm25, t5=construct_t5, seq_class_transformer=construct_seq_class_transformer, random=lambda _: RandomReranker()) # Retrieve the correct reranker from the options map based on the input flag. reranker = construct_map[options.method](options) writer = TrecWriter(args.output_file, args.overwrite_output) evaluator = RerankerEvaluator(reranker, options.metrics, writer=writer) width = max(map(len, args.metrics)) + 1 logging.info("Reranking:") for metric in evaluator.evaluate_by_segments(examples, options.seg_size, options.seg_stride, options.aggregate_method): logging.info(f'{metric.name:<{width}}{metric.value:.5}')