Esempio n. 1
0
def _callname(name, class_name, self_name, up=1):  # imported by .points
    '''(INTERNAL) Assemble the name for an invokation.
    '''
    n, c = class_name, callername(up=up + 1)
    if c:
        n = _dot_(n, _item_ps(c, name))
    if self_name:
        n = '%s %r' % (n, self_name)
    return n
Esempio n. 2
0
    def toRepr(self, **kwds):  # PYCHOK expected
        '''(INTERNAL) I{Could be overloaded}.

           @kwarg kwds: Optional, keyword arguments.

           @return: C{toStr}() with keyword arguments (as C{str}).
        '''
        t = self.toStr(**kwds).lstrip('([{').rstrip('}])')
        return _item_ps(self.classname, t)  # XXX (self.named, t)
Esempio n. 3
0
def _ll2datum(ll, datum, name):
    '''(INTERNAL) Convert datum if needed.
    '''
    if datum not in (None, ll.datum):
        try:
            ll = ll.convertDatum(datum)
        except AttributeError:
            raise _TypeError(name,
                             ll,
                             txt=_item_ps(_no_convertDatum_, datum.name))
    return ll
Esempio n. 4
0
def unstr(name, *args, **kwds):
    '''Return the string representation of an invokation.

       @arg name: Function, method or class name (C{str}).
       @arg args: Optional positional arguments.
       @kwarg kwds: Optional keyword arguments.

       @return: Representation (C{str}).
    '''
    t = reprs(args, fmt=_g) + pairs(sorted(kwds.items()))
    return _item_ps(name, _COMMA_SPACE_.join(t))
Esempio n. 5
0
    def toRepr(self, prec=6, sep=_COMMA_SPACE_, **unused):  # PYCHOK signature
        '''Return the -Tuple items as C{name=value} string(s).

           @kwarg prec: The C{float} precision, number of decimal digits (0..9).
                        Trailing zero decimals are stripped for B{C{prec}} values
                        of 1 and above, but kept for negative B{C{prec}} values.
           @kwarg sep: Optional separator to join (C{str}).

           @return: Tuple items (C{str}).
        '''
        return _item_ps(self.named, sep.join(pairs(self.items(), prec=prec)))
Esempio n. 6
0
 def _latlon3(self, LatLon, datum):
     '''(INTERNAL) Convert cached LatLon
     '''
     ll = self._latlon
     if LatLon is None:
         if datum and datum != ll.datum:
             raise _TypeError(latlon=ll,
                              txt=_item_ps(_no_convertDatum_, datum.name))
         return _xnamed(LatLonDatum3Tuple(ll.lat, ll.lon, ll.datum),
                        ll.name)
     else:
         _xsubclassof(_LLEB, LatLon=LatLon)
         ll = _xnamed(LatLon(ll.lat, ll.lon, datum=ll.datum), ll.name)
         return _ll2datum(ll, datum, _LatLon_)
Esempio n. 7
0
    def toLatLon(self, LatLon=None, datum=Datums.WGS84):
        '''Convert this OSGR coordinate to an (ellipsoidal) geodetic
           point.

           While OS grid references are based on the OSGB36 datum, the
           I{Ordnance Survey} have deprecated the use of OSGB36 for
           lat-/longitude coordinates (in favour of WGS84). Hence, this
           method returns WGS84 by default with OSGB36 as an option,
           U{see<https://www.OrdnanceSurvey.co.UK/blog/2014/12/2>}.

           I{Note formulation implemented here due to Thomas, Redfearn,
           etc. is as published by OS, but is inferior to Krüger as
           used by e.g. Karney 2011.}

           @kwarg LatLon: Optional ellipsoidal class to return the
                          geodetic point (C{LatLon}) or C{None}.
           @kwarg datum: Optional datum to convert to (L{Datum},
                         L{Ellipsoid}, L{Ellipsoid2}, L{Ellipsoid2}
                         or L{a_f2Tuple}).

           @return: The geodetic point (B{C{LatLon}}) or a
                    L{LatLonDatum3Tuple}C{(lat, lon, datum)}
                    if B{C{LatLon}} is C{None}.

           @raise OSGRError: No convergence.

           @raise TypeError: If B{C{LatLon}} is not ellipsoidal or
                             B{C{datum}} is invalid or conversion failed.

           @example:

           >>> from pygeodesy import ellipsoidalVincenty as eV
           >>> g = Osgr(651409.903, 313177.270)
           >>> p = g.toLatLon(eV.LatLon)  # 52°39′28.723″N, 001°42′57.787″E
           >>> # to obtain (historical) OSGB36 lat-/longitude point
           >>> p = g.toLatLon(eV.LatLon, datum=Datums.OSGB36)  # 52°39′27.253″N, 001°43′04.518″E
        '''
        if self._latlon:
            return self._latlon3(LatLon, datum)

        E = self.datum.ellipsoid  # _Datums_OSGB36.ellipsoid, Airy130
        a_F0 = E.a * _F0
        b_F0 = E.b * _F0

        e, n = self.easting, self.northing
        n_N0 = n - _N0

        a, m = _A0, n_N0
        sa = Fsum(a)
        for self._iteration in range(1, _TRIPS):
            a = sa.fsum_(m / a_F0)
            m = n_N0 - b_F0 * _M(E.Mabcd, a)  # meridional arc
            if abs(m) < _10um:
                break
        else:
            t = _dot_(_item_ps(self.classname, self.toStr(prec=-3)),
                      self.toLatLon.__name__)
            raise OSGRError(_no_convergence_, txt=t)
        sa, ca = sincos2(a)

        s = E.e2s2(sa)  # r, v = E.roc2_(sa, _F0)
        v = a_F0 / sqrt(s)  # nu
        r = v * E.e12 / s  # rho = a_F0 * E.e12 / pow(s, 1.5) == a_F0 * E.e12 / (s * sqrt(s))

        vr = v / r  # == s / E.e12
        x2 = vr - 1  # η2
        ta = tan(a)

        v3, v5, v7 = fpowers(v, 7, 3)  # PYCHOK false!
        ta2, ta4, ta6 = fpowers(ta**2, 3)  # PYCHOK false!

        tar = ta / r
        V4 = (a, tar / (2 * v), tar / (24 * v3) * fdot(
            (1, 3, -9), 5 + x2, ta2, ta2 * x2), tar / (720 * v5) * fdot(
                (61, 90, 45), 1, ta2, ta4))

        csa = 1.0 / ca
        X5 = (_B0, csa / v, csa / (6 * v3) * fsum_(vr, ta2, ta2),
              csa / (120 * v5) * fdot(
                  (5, 28, 24), 1, ta2, ta4), csa / (5040 * v7) * fdot(
                      (61, 662, 1320, 720), 1, ta2, ta4, ta6))

        d, d2, d3, d4, d5, d6, d7 = fpowers(e - _E0, 7)  # PYCHOK false!
        a = fdot(V4, 1, -d2, d4, -d6)
        b = fdot(X5, 1, d, -d3, d5, -d7)

        r = _LLEB(degrees90(a),
                  degrees180(b),
                  datum=self.datum,
                  name=self.name)
        r._iteration = self._iteration  # only ellipsoidal LatLon
        self._latlon = r
        return self._latlon3(LatLon, datum)
Esempio n. 8
0
 def toRepr(self, prec=6, fmt=_Fmt):  # PYCHOK _Named
     '''Like C{repr(dict)} but with C{name} and  C{floats} formatting by C{fstr}.
     '''
     t = pairs(self.items(), prec=prec, fmt=fmt, sep=_EQUAL_)
     return _item_ps(self.name, _COMMA_SPACE_.join(sorted(t)))
Esempio n. 9
0
 def __repr__(self):
     return _item_ps(self.named, int.__repr__(self))
Esempio n. 10
0
 def __str__(self):
     from pygeodesy.named import classname
     return _item_ps(classname(self, prefixed=True), NN)
Esempio n. 11
0
def _error(fun, lat, lon, e):
    '''(INTERNAL) Format an error
    '''
    return _item_cs(_item_ps(fun.__name__, fstr((lat, lon))), e)