Esempio n. 1
0
def test_make_rotation_x():
    a = Matrix4()
    b = sqrt(3) / 2
    c = Matrix4().set(1, 0, 0, 0, 0, b, -0.5, 0, 0, 0.5, b, 0, 0, 0, 0, 1)

    a.make_rotation_x(pi / 6)
    assert matrix_equals(a, c)
Esempio n. 2
0
def test_make_translation():
    a = Matrix4()
    b = Vector3(2, 3, 4)
    c = Matrix4().set(1, 0, 0, 2, 0, 1, 0, 3, 0, 0, 1, 4, 0, 0, 0, 1)

    a.make_translation(b.x, b.y, b.z)
    assert matrix_equals(a, c)
Esempio n. 3
0
def test_make_rotation_axis():
    axis = Vector3(1.5, 0.0, 1.0).normalize()
    rads = radians(45)
    a = Matrix4().make_rotation_axis(axis, rads)

    expected = Matrix4().set(
        0.9098790095958609,
        -0.39223227027636803,
        0.13518148560620882,
        0,
        0.39223227027636803,
        0.7071067811865476,
        -0.588348405414552,
        0,
        0.13518148560620882,
        0.588348405414552,
        0.7972277715906868,
        0,
        0,
        0,
        0,
        1,
    )

    assert matrix_equals(a, expected), "Check numeric result"
Esempio n. 4
0
def test_make_orthographic():
    a = Matrix4().make_orthographic(-1, 1, -1, 1, 1, 100)
    expected = Matrix4().set(
        1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -2 / 99, -101 / 99, 0, 0, 0, 1
    )

    assert matrix_equals(a, expected), "Check result"
Esempio n. 5
0
def test_scale():
    a = Matrix4().set(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)
    b = Vector3(2, 3, 4)
    c = Matrix4().set(2, 6, 12, 4, 10, 18, 28, 8, 18, 30, 44, 12, 26, 42, 60, 16)

    a.scale(b)
    assert matrix_equals(a, c)
Esempio n. 6
0
def test_set_position():
    a = Matrix4().set(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
    b = Vector3(-1, -2, -3)
    c = Matrix4().set(0, 1, 2, -1, 4, 5, 6, -2, 8, 9, 10, -3, 12, 13, 14, 15)

    a.set_position(b)
    assert matrix_equals(a, c)
Esempio n. 7
0
def test_composedecompose():
    t_values = [
        Vector3(),
        Vector3(3, 0, 0),
        Vector3(0, 4, 0),
        Vector3(0, 0, 5),
        Vector3(-6, 0, 0),
        Vector3(0, -7, 0),
        Vector3(0, 0, -8),
        Vector3(-2, 5, -9),
        Vector3(-2, -5, -9),
    ]

    s_values = [
        Vector3(1, 1, 1),
        Vector3(2, 2, 2),
        Vector3(1, -1, 1),
        Vector3(-1, 1, 1),
        Vector3(1, 1, -1),
        Vector3(2, -2, 1),
        Vector3(-1, 2, -2),
        Vector3(-1, -1, -1),
        Vector3(-2, -2, -2),
    ]

    r_values = [
        Quaternion(),
        Quaternion().set_from_euler(Euler(1, 1, 0)),
        Quaternion().set_from_euler(Euler(1, -1, 1)),
        Quaternion(0, 0.9238795292366128, 0, 0.38268342717215614),
    ]

    for ti in range(len(t_values)):
        for si in range(len(s_values)):
            for ri in range(len(r_values)):
                t = t_values[ti]
                s = s_values[si]
                r = r_values[ri]

                m = Matrix4().compose(t, r, s)
                t2 = Vector3()
                r2 = Quaternion()
                s2 = Vector3()

                m.decompose(t2, r2, s2)

                m2 = Matrix4().compose(t2, r2, s2)

                ##
                # debug code
                # matrixIsSame = matrix_equals( m, m2 )
                #             if ( ! matrixIsSame ) {
                #     console.log( t, s, r )
                #                     console.log( t2, s2, r2 )
                #                     console.log( m, m2 )
                #                 }
                ##

                assert matrix_equals(m, m2)
Esempio n. 8
0
def test_copy_position():
    a = Matrix4().set(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)
    b = Matrix4().set(1, 2, 3, 0, 5, 6, 7, 0, 9, 10, 11, 0, 13, 14, 15, 16)

    assert not matrix_equals(a, b), "a and b initially not equal"

    b.copy_position(a)
    assert matrix_equals(a, b), "a and b equal after copy_position()"
Esempio n. 9
0
def test_copy():
    a = Matrix4().set(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
    b = Matrix4().copy(a)

    assert matrix_equals(a, b)

    # ensure that it is a True copy
    a.elements[0] = 2
    assert not matrix_equals(a, b)
Esempio n. 10
0
def test_matrix4_set_from_euler_euler_from_rotation_matrix():
    test_values = [euler_zero, euler_axyz, euler_azyx]
    for i in range(len(test_values)):

        v = test_values[i]
        m = Matrix4().make_rotation_from_euler(v)

        v2 = Euler().set_from_rotation_matrix(m, v.order)
        m2 = Matrix4().make_rotation_from_euler(v2)
        assert matrix_equals(m, m2, 0.0001)
Esempio n. 11
0
def test_transpose():
    a = Matrix4()
    b = a.clone().transpose()
    assert matrix_equals(a, b)

    b = Matrix4().set(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
    c = b.clone().transpose()
    assert not matrix_equals(b, c)
    c.transpose()
    assert matrix_equals(b, c)
Esempio n. 12
0
def test_equals():
    a = Matrix4().set(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
    b = Matrix4().set(0, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

    assert not a.equals(b), "Check that a does not equal b"
    assert not b.equals(a), "Check that b does not equal a"

    a.copy(b)
    assert a.equals(b), "Check that a equals b after copy()"
    assert b.equals(a), "Check that b equals a after copy()"
Esempio n. 13
0
def test_set_from_rotation_matrix():
    # contrived examples purely to please the god of code coverage...
    # match conditions in various 'else [if]' blocks

    a = Quaternion()
    q = Quaternion(-9, -2, 3, -4).normalize()
    m = Matrix4().make_rotation_from_quaternion(q)
    expected = Vector4(
        0.8581163303210332,
        0.19069251784911848,
        -0.2860387767736777,
        0.38138503569823695,
    )

    a.set_from_rotation_matrix(m)
    assert abs(a.x - expected.x) <= eps, "m11 > m22 && m11 > m33: check x"
    assert abs(a.y - expected.y) <= eps, "m11 > m22 && m11 > m33: check y"
    assert abs(a.z - expected.z) <= eps, "m11 > m22 && m11 > m33: check z"
    assert abs(a.w - expected.w) <= eps, "m11 > m22 && m11 > m33: check w"

    q = Quaternion(-1, -2, 1, -1).normalize()
    m.make_rotation_from_quaternion(q)
    expected = Vector4(
        0.37796447300922714,
        0.7559289460184544,
        -0.37796447300922714,
        0.37796447300922714,
    )

    a.set_from_rotation_matrix(m)
    assert abs(a.x - expected.x) <= eps, "m22 > m33: check x"
    assert abs(a.y - expected.y) <= eps, "m22 > m33: check y"
    assert abs(a.z - expected.z) <= eps, "m22 > m33: check z"
    assert abs(a.w - expected.w) <= eps, "m22 > m33: check w"
Esempio n. 14
0
def test_set_from_matrix_position():
    a = Vector3()
    m = Matrix4().set(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
                      53)

    a.set_from_matrix_position(m)
    assert a.x == 7, "Check x"
    assert a.y == 19, "Check y"
    assert a.z == 37, "Check z"
Esempio n. 15
0
def test_set_from_euler_set_from_rotation_matrix():
    # ensure euler conversion for Quaternion matches that of Matrix4
    for i in range(len(orders)):
        q = Quaternion().set_from_euler(
            change_euler_order(euler_angles, orders[i]))
        m = Matrix4().make_rotation_from_euler(
            change_euler_order(euler_angles, orders[i]))
        q2 = Quaternion().set_from_rotation_matrix(m)

        assert q_sub(q, q2).length() < 0.001
Esempio n. 16
0
def test_transform_direction():
    a = Vector3(x, y, z)
    m = Matrix4()
    transformed = Vector3(0.3713906763541037, 0.5570860145311556,
                          0.7427813527082074)

    a.transform_direction(m)
    assert abs(a.x - transformed.x) <= eps, "Check x"
    assert abs(a.y - transformed.y) <= eps, "Check y"
    assert abs(a.z - transformed.z) <= eps, "Check z"
Esempio n. 17
0
def test_set_from_matrix_scale():
    a = Vector3()
    m = Matrix4().set(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
                      53)
    expected = Vector3(25.573423705088842, 31.921779399024736,
                       35.70714214271425)

    a.set_from_matrix_scale(m)
    assert abs(a.x - expected.x) <= eps, "Check x"
    assert abs(a.y - expected.y) <= eps, "Check y"
    assert abs(a.z - expected.z) <= eps, "Check z"
Esempio n. 18
0
def test_multiply_matrices():
    # Reference:
    #
    # #!/usr/bin/env python
    # from __future__ import print_function
    # import numpy as np
    # print(
    #     np.dot(
    #         np.reshape([2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53], (4, 4)),
    #         np.reshape([59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131], (4, 4))
    #     )
    # )
    #
    # [[ 1585  1655  1787  1861]
    #  [ 5318  5562  5980  6246]
    #  [10514 11006 11840 12378]
    #  [15894 16634 17888 18710]]
    lhs = Matrix4().set(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53)
    rhs = Matrix4().set(
        59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131
    )
    ans = Matrix4()

    ans.multiply_matrices(lhs, rhs)

    assert ans.elements[0] == 1585
    assert ans.elements[1] == 5318
    assert ans.elements[2] == 10514
    assert ans.elements[3] == 15894
    assert ans.elements[4] == 1655
    assert ans.elements[5] == 5562
    assert ans.elements[6] == 11006
    assert ans.elements[7] == 16634
    assert ans.elements[8] == 1787
    assert ans.elements[9] == 5980
    assert ans.elements[10] == 11840
    assert ans.elements[11] == 17888
    assert ans.elements[12] == 1861
    assert ans.elements[13] == 6246
    assert ans.elements[14] == 12378
    assert ans.elements[15] == 18710
Esempio n. 19
0
def test_determinant():
    a = Matrix4()
    assert a.determinant() == 1

    a.elements[0] = 2
    assert a.determinant() == 2

    a.elements[0] = 0
    assert a.determinant() == 0

    # calculated via http://www.euclideanspace.com/maths/algebra/matrix/functions/determinant/fourD/index.htm
    a.set(2, 3, 4, 5, -1, -21, -3, -4, 6, 7, 8, 10, -8, -9, -10, -12)
    assert a.determinant() == 76
Esempio n. 20
0
def test_look_at():
    a = Matrix4()
    expected = Matrix4().identity()
    eye = Vector3(0, 0, 0)
    target = Vector3(0, 1, -1)
    up = Vector3(0, 1, 0)

    a.look_at(eye, target, up)
    rotation = Euler().set_from_rotation_matrix(a)
    assert rotation.x * (180 / pi) == 45, "Check the rotation"

    # eye and target are in the same position
    eye.copy(target)
    a.look_at(eye, target, up)
    assert matrix_equals(a, expected), "Check the result for eye == target"

    # up and z are parallel
    eye.set(0, 1, 0)
    target.set(0, 0, 0)
    a.look_at(eye, target, up)
    expected.set(1, 0, 0, 0, 0, 0.0001, 1, 0, 0, -1, 0.0001, 0, 0, 0, 0, 1)
    assert matrix_equals(a, expected), "Check the result for when up and z are parallel"
Esempio n. 21
0
def test_set_from_matrix_column():
    a = Vector3()
    m = Matrix4().set(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
                      53)

    a.set_from_matrix_column(m, 0)
    assert a.x == 2, "Index 0: check x"
    assert a.y == 11, "Index 0: check y"
    assert a.z == 23, "Index 0: check z"

    a.set_from_matrix_column(m, 2)
    assert a.x == 5, "Index 2: check x"
    assert a.y == 17, "Index 2: check y"
    assert a.z == 31, "Index 2: check z"
Esempio n. 22
0
def test_instancing():
    a = Matrix4()
    assert a.determinant() == 1

    b = Matrix4().set(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
    assert b.elements[0] == 0
    assert b.elements[1] == 4
    assert b.elements[2] == 8
    assert b.elements[3] == 12
    assert b.elements[4] == 1
    assert b.elements[5] == 5
    assert b.elements[6] == 9
    assert b.elements[7] == 13
    assert b.elements[8] == 2
    assert b.elements[9] == 6
    assert b.elements[10] == 10
    assert b.elements[11] == 14
    assert b.elements[12] == 3
    assert b.elements[13] == 7
    assert b.elements[14] == 11
    assert b.elements[15] == 15

    assert not matrix_equals(a, b)
Esempio n. 23
0
def test_make_rotation_from_eulerextract_rotation():
    test_values = [
        Euler(0, 0, 0, Euler.RotationOrders.XYZ),
        Euler(1, 0, 0, Euler.RotationOrders.XYZ),
        Euler(0, 1, 0, Euler.RotationOrders.ZYX),
        Euler(0, 0, 0.5, Euler.RotationOrders.YZX),
        Euler(0, 0, -0.5, Euler.RotationOrders.YZX),
    ]

    for i in range(len(test_values)):
        v = test_values[i]

        m = Matrix4().make_rotation_from_euler(v)

        v2 = Euler().set_from_rotation_matrix(m, v.order)
        m2 = Matrix4().make_rotation_from_euler(v2)

        assert matrix_equals(m, m2, eps), (
            "make_rotation_from_euler #"
            + i
            + ": original and Euler-derived matrices are equal"
        )
        assert euler_equals(v, v2, eps), (
            "make_rotation_from_euler #"
            + i
            + ": original and matrix-derived Eulers are equal"
        )

        m3 = Matrix4().extract_rotation(m2)
        v3 = Euler().set_from_rotation_matrix(m3, v.order)

        assert matrix_equals(m, m3, eps), (
            "extract_rotation #" + i + ": original and extracted matrices are equal"
        )
        assert euler_equals(v, v3, eps), (
            "extract_rotation #" + i + ": original and extracted Eulers are equal"
        )
Esempio n. 24
0
def test_apply_matrix4():
    a = Vector3(x, y, z)
    b = Vector4(x, y, z, 1)

    m = Matrix4().make_rotation_x(pi)
    a.apply_matrix4(m)
    b.apply_matrix4(m)
    assert a.x == b.x / b.w
    assert a.y == b.y / b.w
    assert a.z == b.z / b.w

    m = Matrix4().make_translation(3, 2, 1)
    a.apply_matrix4(m)
    b.apply_matrix4(m)
    assert a.x == b.x / b.w
    assert a.y == b.y / b.w
    assert a.z == b.z / b.w

    m = Matrix4().set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0)
    a.apply_matrix4(m)
    b.apply_matrix4(m)
    assert a.x == b.x / b.w
    assert a.y == b.y / b.w
    assert a.z == b.z / b.w
Esempio n. 25
0
def test_multiply_quaternions_multiply():
    angles = [Euler(1, 0, 0), Euler(0, 1, 0), Euler(0, 0, 1)]

    q1 = Quaternion().set_from_euler(
        change_euler_order(angles[0], Euler.RotationOrders.XYZ))
    q2 = Quaternion().set_from_euler(
        change_euler_order(angles[1], Euler.RotationOrders.XYZ))
    q3 = Quaternion().set_from_euler(
        change_euler_order(angles[2], Euler.RotationOrders.XYZ))

    q = Quaternion().multiply_quaternions(q1, q2).multiply(q3)

    m1 = Matrix4().make_rotation_from_euler(
        change_euler_order(angles[0], Euler.RotationOrders.XYZ))
    m2 = Matrix4().make_rotation_from_euler(
        change_euler_order(angles[1], Euler.RotationOrders.XYZ))
    m3 = Matrix4().make_rotation_from_euler(
        change_euler_order(angles[2], Euler.RotationOrders.XYZ))

    m = Matrix4().multiply_matrices(m1, m2).multiply(m3)

    q_from_m = Quaternion().set_from_rotation_matrix(m)

    assert q_sub(q, q_from_m).length() < 0.001
Esempio n. 26
0
def test_identity():
    b = Matrix4().set(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
    assert b.elements[0] == 0
    assert b.elements[1] == 4
    assert b.elements[2] == 8
    assert b.elements[3] == 12
    assert b.elements[4] == 1
    assert b.elements[5] == 5
    assert b.elements[6] == 9
    assert b.elements[7] == 13
    assert b.elements[8] == 2
    assert b.elements[9] == 6
    assert b.elements[10] == 10
    assert b.elements[11] == 14
    assert b.elements[12] == 3
    assert b.elements[13] == 7
    assert b.elements[14] == 11
    assert b.elements[15] == 15

    a = Matrix4()
    assert not matrix_equals(a, b)

    b.identity()
    assert matrix_equals(a, b)
Esempio n. 27
0
def test_to_array():
    a = Matrix4().set(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)
    no_offset = [1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15, 4, 8, 12, 16]
    with_offset = [None, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15, 4, 8, 12, 16]

    array = a.to_array()
    assert array == no_offset, "No array, no offset"

    array = []
    a.to_array(array)
    assert array == no_offset, "With array, no offset"

    array = []
    a.to_array(array, 1)
    assert array == with_offset, "With array, with offset"
Esempio n. 28
0
def test_make_basisextract_basis():
    identity_basis = [Vector3(1, 0, 0), Vector3(0, 1, 0), Vector3(0, 0, 1)]
    a = Matrix4().make_basis(identity_basis[0], identity_basis[1], identity_basis[2])
    identity = Matrix4()
    assert matrix_equals(a, identity)

    test_bases = [[Vector3(0, 1, 0), Vector3(-1, 0, 0), Vector3(0, 0, 1)]]
    for i in range(len(test_bases)):
        test_basis = test_bases[i]
        b = Matrix4().make_basis(test_basis[0], test_basis[1], test_basis[2])
        out_basis = [Vector3(), Vector3(), Vector3()]
        b.extract_basis(out_basis[0], out_basis[1], out_basis[2])
        # check what goes in, is what comes out.
        for j in range(len(out_basis)):
            assert out_basis[j].equals(test_basis[j])

        # get the basis out the hard war
        for j in range(len(identity_basis)):
            out_basis[j].copy(identity_basis[j])
            out_basis[j].apply_matrix4(b)

        # did the multiply method of basis extraction work?
        for j in range(len(out_basis)):
            assert out_basis[j].equals(test_basis[j])
Esempio n. 29
0
def test_premultiply():
    lhs = Matrix4().set(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53)
    rhs = Matrix4().set(
        59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131
    )

    rhs.premultiply(lhs)

    assert rhs.elements[0] == 1585
    assert rhs.elements[1] == 5318
    assert rhs.elements[2] == 10514
    assert rhs.elements[3] == 15894
    assert rhs.elements[4] == 1655
    assert rhs.elements[5] == 5562
    assert rhs.elements[6] == 11006
    assert rhs.elements[7] == 16634
    assert rhs.elements[8] == 1787
    assert rhs.elements[9] == 5980
    assert rhs.elements[10] == 11840
    assert rhs.elements[11] == 17888
    assert rhs.elements[12] == 1861
    assert rhs.elements[13] == 6246
    assert rhs.elements[14] == 12378
    assert rhs.elements[15] == 18710
Esempio n. 30
0
def test_multiply_vector3():
    angles = [Euler(1, 0, 0), Euler(0, 1, 0), Euler(0, 0, 1)]

    # ensure euler conversion for Quaternion matches that of Matrix4
    for i in range(len(orders)):
        for j in range(len(angles)):
            q = Quaternion().set_from_euler(
                change_euler_order(angles[j], orders[i]))
            m = Matrix4().make_rotation_from_euler(
                change_euler_order(angles[j], orders[i]))

            v0 = Vector3(1, 0, 0)
            qv = v0.clone().apply_quaternion(q)
            mv = v0.clone().apply_matrix4(m)

            assert qv.distance_to(mv) < 0.001