def test_gabor(self): f = filters.Rectangular(self._G, None, 0.1) f = filters.Gabor(self._G, f) self._test_methods(f, tight=False, check=False) self.assertRaises(ValueError, filters.Gabor, graphs.Sensor(), f) f = filters.Regular(self._G) self.assertRaises(ValueError, filters.Gabor, self._G, f)
def gft_windowed_gabor(self, s, k): r"""Gabor windowed graph Fourier transform. Parameters ---------- s : ndarray Graph signal in the vertex domain. k : function Gabor kernel. See :class:`pygsp.filters.Gabor`. Returns ------- s : ndarray Vertex-frequency representation of the signals. Examples -------- >>> G = graphs.Logo() >>> s = np.random.normal(size=(G.N, 2)) >>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x)) >>> s.shape (1130, 2, 1130) """ from pygsp import filters return filters.Gabor(self, k).filter(s)
def test_modulation_gabor(self): """Both should be equivalent for deltas centered at the eigenvalues.""" f = filters.Rectangular(self._G, 0, 0) f1 = filters.Modulation(self._G, f, modulation_first=True) f2 = filters.Gabor(self._G, f) s1 = f1.filter(self._signal) s2 = f2.filter(self._signal) np.testing.assert_allclose(s1, s2, atol=1e-5)
def test_gabor(self): f = filters.Gabor(self._G, lambda x: x / (1. + x)) self._test_methods(f, tight=False, check=False)
def test_gabor(G, fu): g = filters.Gabor(G, fu)