Esempio n. 1
0
    def test_create_evoked_physio_signal(self):
        import pyhrf.paradigm

        phy_params = phy.PHY_PARAMS_FRISTON00
        tr = 1.
        duration = 20.
        ne = np.array([[10., 5.]])
        nb_conds, nb_vox = ne.shape
        # one single stimulation at the begining
        paradigm = pyhrf.paradigm.Paradigm({'c': [np.array([0.])]}, [duration],
                                           {'c': [np.array([1.])]})
        s, f, hbr, cbv = phy.create_evoked_physio_signals(phy_params, paradigm,
                                                          ne, tr)
        # shape of a signal: (nb_vox, nb_scans)

        if 0:
            import matplotlib.pyplot as plt
            t = np.arange(f[0].size) * tr
            plt.plot(t, f[0])
            plt.title('inflow')
            plt.show()

        self.assertEqual(s.shape, (paradigm.get_rastered(tr)['c'][0].size,
                                   nb_vox))

        # check signal causality:
        self.assertEqual(f[0, 0], 1.)
        npt.assert_approx_equal(f[-1, 0], 1., significant=2)

        # non-regression test:
        self.assertEqual(np.argmax(f[:, 0]) * tr, 2)
Esempio n. 2
0
def rasterize_paradigm(paradigm, dt, condition_defs):
    """ Return binary sequences of onsets approximated on temporal grid of
    temporal resolution dt, for all conditions. 'paradigm' is expected to be
    an instance of 'pyhrf.paradigm.mpar.Paradigm'
    """
    rparadigm = paradigm.get_rastered(dt)
    return np.vstack([rparadigm[c.name][0] for c in condition_defs])
Esempio n. 3
0
def rasterize_paradigm(paradigm, dt, condition_defs):
    """ Return binary sequences of onsets approximated on temporal grid of
    temporal resolution dt, for all conditions. 'paradigm' is expected to be
    an instance of 'pyhrf.paradigm.mpar.Paradigm'
    """
    rparadigm = paradigm.get_rastered(dt)
    return np.vstack([rparadigm[c.name][0] for c in condition_defs])
Esempio n. 4
0
    def test_create_evoked_physio_signal(self):
        import pyhrf.paradigm

        phy_params = phy.PHY_PARAMS_FRISTON00
        tr = 1.
        duration = 20.
        ne = np.array([[10., 5.]])
        nb_conds, nb_vox = ne.shape
        # one single stimulation at the begining
        paradigm = pyhrf.paradigm.Paradigm({'c': [np.array([0.])]}, [duration],
                                           {'c': [np.array([1.])]})
        s, f, hbr, cbv = phy.create_evoked_physio_signals(
            phy_params, paradigm, ne, tr)
        # shape of a signal: (nb_vox, nb_scans)

        if 0:
            import matplotlib.pyplot as plt
            t = np.arange(f[0].size) * tr
            plt.plot(t, f[0])
            plt.title('inflow')
            plt.show()

        self.assertEqual(s.shape,
                         (paradigm.get_rastered(tr)['c'][0].size, nb_vox))

        # check signal causality:
        self.assertEqual(f[0, 0], 1.)
        npt.assert_approx_equal(f[-1, 0], 1., significant=2)

        # non-regression test:
        self.assertEqual(np.argmax(f[:, 0]) * tr, 2)