Esempio n. 1
0
def fit_mdn(X, y, ncomponents=5,
                  nepochs=50, val_pct=0.1,
                  batch_size=None, target_batch_pct=0.01,
                  min_batch_size=10, max_batch_size=100,
                  verbose=False, lr=3e-4, weight_decay=0.01):
    import uuid
    tmp_file = '/tmp/tmp_file_' + str(uuid.uuid4())

    if batch_size is None:
        batch_size = max(min_batch_size, min(max_batch_size, int(np.round(X.shape[0]*target_batch_pct))))

    # Standardize the features (helps with gradient propagation)
    Xstd = X.std(axis=0)
    Xstd[Xstd == 0] = 1 # Handle constant features
    tX = autograd.Variable(torch.FloatTensor((X - X.mean(axis=0,keepdims=True)) / Xstd[np.newaxis, :]), requires_grad=False)
    tY = autograd.Variable(torch.FloatTensor(y), requires_grad=False)

    # Create train/validate splits
    indices = np.arange(X.shape[0], dtype=int)
    np.random.shuffle(indices)
    train_cutoff = int(np.round(len(indices)*(1-val_pct)))
    train_indices = indices[:train_cutoff]
    validate_indices = indices[train_cutoff:]

    model = MixtureDensityNetwork(X.shape[1], ncomponents, X.mean(axis=0), Xstd, y.mean(), y.std())

    # Setup the SGD method
    optimizer = optim.RMSprop(model.parameters(), lr=lr, weight_decay=weight_decay)

    # Track progress
    train_losses, val_losses, best_loss = np.zeros(nepochs), np.zeros(nepochs), None
    
    # Train the model
    for epoch in range(nepochs):
        if verbose:
            print('\t\tEpoch {}'.format(epoch+1))
            sys.stdout.flush()

        # Track the loss curves
        train_loss = torch.Tensor([0])
        for batch_idx, batch in enumerate(batches(train_indices, batch_size, shuffle=True)):
            if verbose and (batch_idx % 100 == 0):
                print('\t\t\tBatch {}'.format(batch_idx))
            tidx = autograd.Variable(torch.LongTensor(batch), requires_grad=False)

            # Set the model to training mode
            model.train()

            # Reset the gradient
            model.zero_grad()

            # Run the model and get the predictions
            pi, mu, sigma = model(tX[tidx])

            # Calculate the log-probabilities
            components = torch.distributions.Normal(mu, sigma)
            logprobs = components.log_prob(tY[tidx][:,None])
            
            # -log(GMM(y | x)) loss
            loss = -logsumexp(pi.log() + logprobs, dim=1).mean()

            # Calculate gradients
            loss.backward()

            # Apply the update
            # [p for p in model.parameters() if p.requires_grad]
            optimizer.step()

            # Track the loss
            train_loss += loss.data

        validate_loss = torch.Tensor([0])
        for batch_idx, batch in enumerate(batches(validate_indices, batch_size, shuffle=False)):
            if verbose and (batch_idx % 100 == 0):
                print('\t\t\tValidation Batch {}'.format(batch_idx))
            tidx = autograd.Variable(torch.LongTensor(batch), requires_grad=False)

            # Set the model to test mode
            model.eval()

            # Reset the gradient
            model.zero_grad()

            # Run the model and get the predictions
            pi, mu, sigma = model(tX[tidx])

            # Calculate the log-probabilities
            components = torch.distributions.Normal(mu, sigma)
            logprobs = components.log_prob(tY[tidx][:,None])
            
            # -log(GMM(y | x)) loss
            loss = -logsumexp(pi.log() + logprobs, dim=1).sum()

            # Track the loss
            validate_loss += loss.data

        train_losses[epoch] = train_loss.numpy() / float(len(train_indices))
        val_losses[epoch] = validate_loss.numpy() / float(len(validate_indices))

        # Check if we are currently have the best held-out log-likelihood
        if epoch == 0 or val_losses[epoch] <= best_loss:
            if verbose:
                print('\t\t\tSaving test set results.      <----- New high water mark on epoch {}'.format(epoch+1))
            # If so, use the current model on the test set
            best_loss = val_losses[epoch]
            torch.save(model, tmp_file)
        
        if verbose:
            print('Validation loss: {} Best: {}'.format(val_losses[epoch], best_loss))

    model = torch.load(tmp_file)
    os.remove(tmp_file)
    return model
Esempio n. 2
0
def fit_classifier(
    X,
    y,
    classes=None,
    nepochs=40,
    val_pct=0.1,
    batch_size=None,
    target_batch_pct=0.01,
    min_batch_size=10,
    max_batch_size=100,
    verbose=False,
    lr=3e-4,
    weight_decay=5e-5,
):
    if classes is None:
        classes = np.unique(y)
    nclasses = classes.shape[0]

    # Create a temporary file to store the best method
    import uuid

    tmp_file = "/tmp/tmp_file_" + str(uuid.uuid4())

    # Choose a suitable batch size
    if batch_size is None:
        batch_size = max(
            min_batch_size,
            min(max_batch_size, int(np.round(X.shape[0] * target_batch_pct))),
        )

    # Standardize the features (helps with gradient propagation)
    Xstd = X.std(axis=0)
    Xstd[Xstd == 0] = 1  # Handle constant features
    tX = autograd.Variable(
        torch.FloatTensor(
            (X - X.mean(axis=0, keepdims=True)) / Xstd[np.newaxis, :]),
        requires_grad=False,
    )

    # Create the classes using their indices
    tY = np.zeros(y.shape[0], dtype=int)
    for i, c in enumerate(classes):
        tY[y == c] = i
    tY = autograd.Variable(torch.LongTensor(tY), requires_grad=False)

    # Training weights to balance the dataset
    y_counts = np.array([(y == c).sum() for c in classes])
    tY_weights = autograd.Variable(torch.FloatTensor(
        len(y_counts) * y_counts / float(len(y))),
                                   requires_grad=False)
    crossent = nn.CrossEntropyLoss(weight=tY_weights)

    # Create train/validate splits
    indices = np.arange(X.shape[0], dtype=int)
    np.random.shuffle(indices)
    train_cutoff = int(np.round(len(indices) * (1 - val_pct)))
    train_indices = indices[:train_cutoff]
    validate_indices = indices[train_cutoff:]

    model = DiscreteClassifierNetwork(X.shape[1], classes, X.mean(axis=0),
                                      Xstd)

    # Setup the SGD method
    optimizer = optim.RMSprop(model.parameters(),
                              lr=lr,
                              weight_decay=weight_decay)

    # Track progress
    train_losses, val_losses, best_loss = np.zeros(nepochs), np.zeros(
        nepochs), None

    # Train the model
    for epoch in range(nepochs):
        if verbose:
            print("\t\tEpoch {}".format(epoch + 1))
            sys.stdout.flush()

        # Track the loss curves
        train_loss = torch.Tensor([0])
        for batch_idx, batch in enumerate(
                batches(train_indices, batch_size, shuffle=True)):
            if verbose and (batch_idx % 100 == 0):
                print("\t\t\tBatch {}".format(batch_idx))
            tidx = autograd.Variable(torch.LongTensor(batch),
                                     requires_grad=False)

            # Set the model to training mode
            model.train()

            # Reset the gradient
            model.zero_grad()

            # Run the model and get the predictions
            logits = model(tX[tidx])

            # Cross-entropy loss
            loss = crossent(logits, tY[tidx])

            # Calculate gradients
            loss.backward()

            # Apply the update
            # [p for p in model.parameters() if p.requires_grad]
            optimizer.step()

            # Track the loss
            train_loss += loss.data

        validate_loss = torch.Tensor([0])
        for batch_idx, batch in enumerate(
                batches(validate_indices, batch_size, shuffle=False)):
            if verbose and (batch_idx % 100 == 0):
                print("\t\t\tValidation Batch {}".format(batch_idx))
            tidx = autograd.Variable(torch.LongTensor(batch),
                                     requires_grad=False)

            # Set the model to test mode
            model.eval()

            # Reset the gradient
            model.zero_grad()

            # Run the model and get the predictions
            logits = model(tX[tidx])

            # Cross-entropy loss
            loss = crossent(logits, tY[tidx])

            # Track the loss
            validate_loss += loss.data

        train_losses[epoch] = train_loss.numpy() / float(len(train_indices))
        val_losses[epoch] = validate_loss.numpy() / float(
            len(validate_indices))

        # Check if we are currently have the best held-out log-likelihood
        if epoch == 0 or val_losses[epoch] <= best_loss:
            if verbose:
                print(
                    "\t\t\tSaving test set results.      <----- New high water mark on epoch {}"
                    .format(epoch + 1))
            # If so, use the current model on the test set
            best_loss = val_losses[epoch]
            torch.save(model, tmp_file)

        if verbose:
            print("Validation loss: {} Best: {}".format(
                val_losses[epoch], best_loss))

    model = torch.load(tmp_file)
    os.remove(tmp_file)
    return model
Esempio n. 3
0
def fit_nn(X,
           y,
           nepochs=100,
           batch_size=10,
           val_pct=0.1,
           verbose=False,
           lr=3e-4,
           weight_decay=0.01,
           model_type='nonlinear'):
    import uuid
    tmp_file = '/tmp/' + str(uuid.uuid4())

    # Standardize the features (helps with gradient propagation)
    Xstd = X.std(axis=0)
    Xstd[Xstd == 0] = 1  # Handle constant features
    tX = autograd.Variable(torch.FloatTensor(
        (X - X.mean(axis=0, keepdims=True)) / Xstd[np.newaxis, :]),
                           requires_grad=False)
    tY = autograd.Variable(torch.FloatTensor((y - y.mean()) / y.std()),
                           requires_grad=False)

    # Create train/validate splits
    indices = np.arange(X.shape[0], dtype=int)
    np.random.shuffle(indices)
    train_cutoff = int(np.round(len(indices) * (1 - val_pct)))
    train_indices = indices[:train_cutoff]
    validate_indices = indices[train_cutoff:]

    model = NeuralModel(X.shape[1],
                        X.mean(axis=0),
                        Xstd,
                        y.mean(),
                        y.std(),
                        model_type=model_type)

    # Setup the SGD method
    optimizer = optim.RMSprop(model.parameters(),
                              lr=lr,
                              weight_decay=weight_decay)

    # Track progress
    train_losses, val_losses, best_loss = np.zeros(nepochs), np.zeros(
        nepochs), None

    # Train the model
    for epoch in range(nepochs):
        if verbose:
            print('\t\tEpoch {}'.format(epoch + 1))
            sys.stdout.flush()

        # Track the loss curves
        train_loss = torch.Tensor([0])
        for batch_idx, batch in enumerate(
                batches(train_indices, batch_size, shuffle=True)):
            if verbose and (batch_idx % 100 == 0):
                print('\t\t\tBatch {}'.format(batch_idx))
            tidx = autograd.Variable(torch.LongTensor(batch),
                                     requires_grad=False)

            # Set the model to training mode
            model.train()

            # Reset the gradient
            model.zero_grad()

            # Run the model and get the predictions
            tYhat = model(tX[tidx])[:, 0]

            # MSE loss
            loss = ((tY[tidx] - tYhat)**2).sum()

            # Calculate gradients
            loss.backward()

            # Apply the update
            # [p for p in model.parameters() if p.requires_grad]
            optimizer.step()

            # Track the loss
            train_loss += loss.data

        validate_loss = torch.Tensor([0])
        for batch_idx, batch in enumerate(
                batches(validate_indices, batch_size, shuffle=False)):
            if verbose and (batch_idx % 100 == 0):
                print('\t\t\tValidation Batch {}'.format(batch_idx))
            tidx = autograd.Variable(torch.LongTensor(batch),
                                     requires_grad=False)

            # Set the model to test mode
            model.eval()

            # Reset the gradient
            model.zero_grad()

            # Run the model and get the prior predictions
            tYhat = model(tX[tidx])[:, 0]

            # MSE loss
            loss = ((tY[tidx] - tYhat)**2).sum()

            # Track the loss
            validate_loss += loss.data

        train_losses[epoch] = train_loss.numpy() / float(len(train_indices))
        val_losses[epoch] = validate_loss.numpy() / float(
            len(validate_indices))

        # Check if we are currently have the best held-out log-likelihood
        if epoch == 0 or val_losses[epoch] <= best_loss:
            if verbose:
                print(
                    '\t\t\tSaving test set results.      <----- New high water mark on epoch {}'
                    .format(epoch + 1))
            # If so, use the current model on the test set
            best_loss = val_losses[epoch]
            torch.save(model, tmp_file)

        if verbose:
            print('Validation loss: {} Best: {}'.format(
                val_losses[epoch], best_loss))

    model = torch.load(tmp_file)
    os.remove(tmp_file)
    return model