def __init__(self, params=None, debug=False): """ Args: params: dict with parameters for spatial and temporal poolers debug: whether to print debug messages """ params = utils.fill_default_params(params, default_params) self.debug = debug assert (params['maxCoincidenceCount'] > params['requestedGroupsCount']) if params['spatialPoolerAlgorithm'] == 'gaussian': assert (params['sigma'] >= 0) assert (params['maxDistance'] >= 0) self.sp = SpatialPooler( algorithm=params['spatialPoolerAlgorithm'], max_distance=params['maxDistance'], sigma=params['sigma'], max_coincidence_count=params['maxCoincidenceCount'], rare_coincidence_threshold=params['rareCoincidenceThreshold'], ignore_background_pattern=params['ignoreBackgroundPattern'], background_color=params['backgroundColor'], debug=self.debug) self.tp = TemporalPooler( algorithm=params['temporalPoolerAlgorithm'], transition_memory=params['transitionMemory'], requested_group_count=params['requestedGroupsCount'], symmetrizeTAM=params['symmetrizeTAM'], debug=self.debug) self.tp_first_run = True self.y = None # spatial inference in fw direction self.fw_mesage = None # forward output of the node
def __init__(self, params=None, debug=False): """ Args: params: dict with parameters for spatial and temporal poolers debug: whether to print debug messages """ params = utils.fill_default_params(params, default_params) self.debug = debug assert(params['maxCoincidenceCount'] > params['requestedGroupsCount']) if params['spatialPoolerAlgorithm'] == 'gaussian': assert(params['sigma'] >= 0) assert(params['maxDistance'] >= 0) self.sp = SpatialPooler( algorithm=params['spatialPoolerAlgorithm'], max_distance=params['maxDistance'], sigma=params['sigma'], max_coincidence_count=params['maxCoincidenceCount'], rare_coincidence_threshold=params['rareCoincidenceThreshold'], ignore_background_pattern=params['ignoreBackgroundPattern'], background_color=params['backgroundColor'], debug=self.debug ) self.tp = TemporalPooler( algorithm=params['temporalPoolerAlgorithm'], transition_memory=params['transitionMemory'], requested_group_count=params['requestedGroupsCount'], symmetrizeTAM=params['symmetrizeTAM'], debug=self.debug ) self.tp_first_run = True self.y = None # spatial inference in fw direction self.fw_mesage = None # forward output of the node
class BaseNode: def __init__(self, params=None, debug=False): """ Args: params: dict with parameters for spatial and temporal poolers debug: whether to print debug messages """ params = utils.fill_default_params(params, default_params) self.debug = debug assert(params['maxCoincidenceCount'] > params['requestedGroupsCount']) if params['spatialPoolerAlgorithm'] == 'gaussian': assert(params['sigma'] >= 0) assert(params['maxDistance'] >= 0) self.sp = SpatialPooler( algorithm=params['spatialPoolerAlgorithm'], max_distance=params['maxDistance'], sigma=params['sigma'], max_coincidence_count=params['maxCoincidenceCount'], rare_coincidence_threshold=params['rareCoincidenceThreshold'], ignore_background_pattern=params['ignoreBackgroundPattern'], background_color=params['backgroundColor'], debug=self.debug ) self.tp = TemporalPooler( algorithm=params['temporalPoolerAlgorithm'], transition_memory=params['transitionMemory'], requested_group_count=params['requestedGroupsCount'], symmetrizeTAM=params['symmetrizeTAM'], debug=self.debug ) self.tp_first_run = True self.y = None # spatial inference in fw direction self.fw_mesage = None # forward output of the node def enable_debug(self): self.debug = True def do_spatial_learning(self, pattern): self.sp.learn(pattern) def do_temporal_learning(self, pattern, is_reset=False): if self.tp_first_run: self.sp.finalize_learning() self.tp.coincidences_stats = self.sp.coincidences_stats self.tp.coincidences_count = len(self.sp.coincidences_stats) self.tp_first_run = False self.tp.learn(self.sp.infer(pattern, is_reset), is_reset) def finalize_learning(self): self.tp.finalize_learning() if self.debug: print(" Codebook size after learning: %d" % self.tp.coincidences_count) print(" Temporal group size after learning: %d" % len(self.tp.temporal_groups)) def infer(self, pattern): self.y = self.sp.infer(pattern) self.fw_mesage = self.tp.infer(self.y) # feed-forward message return self.fw_mesage def print_status(self): print("Status of a HTM node") print("Receptive field: [%d,%d]" % (self.receptive_field[0], self.receptive_field[1])) print("# of coincidences", len(self.coincidences)) print(self.coincidences_stats)