def calcualteSaliencyMaps(filename): # get the saliency maps using the 3 implemented methods rbd = psal.get_saliency_rbd(filename).astype('uint8') ft = psal.get_saliency_ft(filename).astype('uint8') mbd = psal.get_saliency_mbd(filename).astype('uint8') # often, it is desirable to have a binary saliency map mbd_binary_sal = psal.binarise_saliency_map(mbd,method='adaptive') ft_binary_sal = psal.binarise_saliency_map(ft,method='adaptive') rbd_binary_sal = psal.binarise_saliency_map(rbd,method='adaptive') return (rbd, ft, mbd, rbd_binary_sal, ft_binary_sal, mbd_binary_sal)
def saliency_3(frame, threshold=0.5): #candidate 3 #https://github.com/yhenon/pyimgsaliency #Saliency Optimization from Robust Background Detection, Wangjiang Zhu, Shuang Liang, Yichen Wei and Jian Sun, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014 rbd = psal.get_saliency_rbd(frame).astype('uint8') #often, it is desirable to have a binary saliency map #check 'binarise.py' #the method can be either adaptive or fixed #binarise_saliency_map(saliency_map,method='adaptive',threshold=0.5) binary_rbd = psal.binarise_saliency_map(rbd, method='adaptive', threshold = threshold) #openCV cannot display numpy type 0, so convert to uint8 and scale #cv2.imshow('binary',255 * binary_sal.astype('uint8')) return rbd, 255*binary_rbd.astype('uint8')
import pyimgsaliency as psal import cv2 # path to the image filename = 'bird.jpg' # get the saliency maps using the 3 implemented methods rbd = psal.get_saliency_rbd(filename).astype('uint8') ft = psal.get_saliency_ft(filename).astype('uint8') mbd = psal.get_saliency_mbd(filename).astype('uint8') # often, it is desirable to have a binary saliency map binary_sal = psal.binarise_saliency_map(mbd,method='adaptive') img = cv2.imread(filename) cv2.imshow('img',img) cv2.imshow('rbd',rbd) cv2.imshow('ft',ft) cv2.imshow('mbd',mbd) #openCV cannot display numpy type 0, so convert to uint8 and scale cv2.imshow('binary',255 * binary_sal.astype('uint8')) cv2.waitKey(0)
import numpy as np import pyimgsaliency as psal import cv2 if '__main__' == __name__: # path to the image filename = 'bird.jpg' # get the saliency maps using the 3 implemented methods rbd = psal.get_saliency_rbd(filename).astype(np.uint8) ft = psal.get_saliency_ft(filename).astype(np.uint8) mbd = psal.get_saliency_mbd(filename).astype(np.uint8) # often, it is desirable to have a binary saliency map binary_sal = psal.binarise_saliency_map(mbd, method='adaptive') img = cv2.imread(filename) cv2.imshow('img', img) cv2.imshow('rbd', rbd) cv2.imshow('ft', ft) cv2.imshow('mbd', mbd) # OpenCV cannot display numpy type 0, so convert to uint8 and scale cv2.imshow('binary', 255 * binary_sal.astype(np.uint8)) cv2.waitKey(0)
import pyimgsaliency as psal import cv2 # path to the image filename = '/Users/zmalik/image-similarity-fusion/bird.jpg' # get the saliency maps using the 3 implemented methods rbd = psal.get_saliency_rbd(filename).astype('uint8') ft = psal.get_saliency_ft(filename).astype('uint8') mbd = psal.get_saliency_mbd(filename).astype('uint8') # often, it is desirable to have a binary saliency map binary_sal = psal.binarise_saliency_map(mbd, method='adaptive') img = cv2.imread(filename) cv2.imshow('img', img) cv2.imshow('rbd', rbd) cv2.imshow('ft', ft) cv2.imshow('mbd', mbd) # openCV cannot display numpy type 0, so convert to uint8 and scale cv2.imshow('binary', 255 * binary_sal.astype('uint8')) cv2.waitKey(0)
try: os.mkdir('./input/unsup_labels/') os.mkdir('./input/unsup_labels/rdb') os.mkdir('./input/unsup_labels/ft') os.mkdir('./input/unsup_labels/mbd') os.mkdir('./input/unsup_labels/hc') os.mkdir('./input/unsup_labels/rc') except: pass for filename in os.listdir('./input/dataset/MSRA-B'): if filename.endswith('.jpg'): # Get RBD saliency map try: # Unknown error handler rbd = get_saliency_rbd('./input/dataset/MSRA-B/' + filename).astype('uint8') cv2.imwrite('./input/unsup_labels/rdb/' + filename[:-4] + '_ngt.png', rbd) except: with open('output/failed.txt', 'a+') as f: f.write(filename + '\n') # Get FT saliency map ft = get_saliency_ft('./input/dataset/MSRA-B/' + filename).astype('uint8') cv2.imwrite('./input/unsup_labels/ft/' + filename[:-4] + '_ngt.png', ft) # Get MBD saliency map mbd = get_saliency_mbd('./input/dataset/MSRA-B/' + filename).astype('uint8') cv2.imwrite('./input/unsup_labels/mbd/' + filename[:-4] + '_ngt.png', mbd) # Get HC saliency map hc = get_saliency_hc('./input/dataset/MSRA-B/' + filename).astype('uint8')