Esempio n. 1
0
def test_angular_resolution():
    from pyirf.benchmarks import angular_resolution

    np.random.seed(1337)

    TRUE_RES_1 = 0.2
    TRUE_RES_2 = 0.05
    true_resolution = np.append(np.full(1000, TRUE_RES_1),
                                np.full(1000, TRUE_RES_2))

    events = QTable({
        'true_energy':
        np.append(np.full(1000, 5.0), np.full(1000, 50.0)) * u.TeV,
        'theta':
        np.abs(np.random.normal(0, true_resolution)) * u.deg
    })

    ang_res = angular_resolution(
        events,
        [1, 10, 100] * u.TeV,
    )['angular_resolution'].quantity

    assert len(ang_res) == 2
    assert u.isclose(ang_res[0], TRUE_RES_1 * u.deg, rtol=0.05)
    assert u.isclose(ang_res[1], TRUE_RES_2 * u.deg, rtol=0.05)
Esempio n. 2
0
def test_angular_resolution():
    from pyirf.benchmarks import angular_resolution

    np.random.seed(1337)

    TRUE_RES_1 = 0.2
    TRUE_RES_2 = 0.05
    true_resolution = np.append(np.full(1000, TRUE_RES_1),
                                np.full(1000, TRUE_RES_2))

    events = QTable({
        'true_energy':
        np.concatenate([
            [0.5],  # below bin 1 to test with underflow
            np.full(999, 5.0),
            np.full(999, 50.0),
            [500],  # above bin 2 to test with overflow
        ]) * u.TeV,
        'theta':
        np.abs(np.random.normal(0, true_resolution)) * u.deg
    })

    ang_res = angular_resolution(
        events,
        [1, 10, 100] * u.TeV,
    )['angular_resolution'].quantity

    assert len(ang_res) == 2
    assert u.isclose(ang_res[0], TRUE_RES_1 * u.deg, rtol=0.05)
    assert u.isclose(ang_res[1], TRUE_RES_2 * u.deg, rtol=0.05)
Esempio n. 3
0
def test_empty_angular_resolution():
    from pyirf.benchmarks import angular_resolution

    events = QTable({
        'true_energy': [] * u.TeV,
        'theta': [] * u.deg,
    })

    table = angular_resolution(events, [1, 10, 100] * u.TeV)

    assert np.all(np.isnan(table["angular_resolution"]))
def main():
    log = logging.getLogger("lstchain MC DL2 to IRF - sensitivity curves")

    parser = argparse.ArgumentParser(description="MC DL2 to IRF")

    # Required arguments
    parser.add_argument(
        "--gamma-dl2", "-g", type=str, dest="gamma_file", help="Path to the dl2 gamma file"
    )

    parser.add_argument(
        "--proton-dl2",
        "-p",
        type=str,
        dest="proton_file",
        help="Path to the dl2 proton file",
    )

    parser.add_argument(
        "--electron-dl2",
        "-e",
        type=str,
        dest="electron_file",
        help="Path to the dl2 electron file",
    )

    parser.add_argument(
        "--outfile",
        "-o",
        action="store",
        type=str,
        dest="outfile",
        help="Path where to save IRF FITS file",
        default="sensitivity.fits.gz",
    )

    parser.add_argument(
        "--source_alt",
        action="store",
        type=float,
        dest="source_alt",
        help="Source altitude (optional). If not provided, it will be guessed from the gammas true altitude",
        default=None
    )

    parser.add_argument(
        "--source_az",
        action="store",
        type=float,
        dest="source_az",
        help="Source azimuth (optional). If not provided, it will be guessed from the gammas true altitude",
        default=None
    )

    # Optional arguments
    # parser.add_argument('--config', '-c', action='store', type=Path,
    #                     dest='config_file',
    #                     help='Path to a configuration file. If none is given, a standard configuration is applied',
    #                     default=None
    #                     )


    args = parser.parse_args()
    
    logging.basicConfig(level=logging.INFO)
    logging.getLogger("pyirf").setLevel(logging.DEBUG)

    particles = {
    "gamma": {"file": args.gamma_file, "target_spectrum": CRAB_HEGRA},
    "proton": {"file": args.proton_file, "target_spectrum": IRFDOC_PROTON_SPECTRUM},
    "electron": {
        "file": args.electron_file,
        "target_spectrum": IRFDOC_ELECTRON_SPECTRUM,
    },
}

    for particle_type, p in particles.items():
        log.info("Simulated Events: {}".format(particle_type.title()))
        p["events"], p["simulation_info"] = read_mc_dl2_to_QTable(p["file"])
        # p['events'] = filter_events(p['events'], filters)

        print("=====", particle_type, "=====")
        # p["events"]["particle_type"] = particle_type

        p["simulated_spectrum"] = PowerLaw.from_simulation(p["simulation_info"], T_OBS)
        p["events"]["weight"] = calculate_event_weights(
            p["events"]["true_energy"], p["target_spectrum"], p["simulated_spectrum"]
        )
        for prefix in ("true", "reco"):
            k = f"{prefix}_source_fov_offset"
            p["events"][k] = calculate_source_fov_offset(p["events"], prefix=prefix)

    gammas = particles["gamma"]["events"]
    # background table composed of both electrons and protons
    background = table.vstack(
        [particles["proton"]["events"], particles["electron"]["events"]]
    )

    if args.source_alt is None or args.source_az is None:
        source_alt, source_az = determine_source_position(gammas)
    else:
        source_alt, source_az = args.source_alt, args.source_az

    for particle_type, p in particles.items():
        # calculate theta / distance between reco and assumed source position
        # we handle only ON observations here, so the assumed source pos is the pointing position
        p["events"]["theta"] = calculate_theta(p["events"], assumed_source_az=source_az, assumed_source_alt=source_alt)
        log.info(p["simulation_info"])
        log.info("")


    INITIAL_GH_CUT = np.quantile(gammas["gh_score"], (1 - INITIAL_GH_CUT_EFFICENCY))
    log.info("Using fixed G/H cut of {} to calculate theta cuts".format(INITIAL_GH_CUT))

    # event display uses much finer bins for the theta cut than
    # for the sensitivity
    theta_bins = add_overflow_bins(
        create_bins_per_decade(MIN_ENERGY, MAX_ENERGY, N_BIN_PER_DECADE)
    )

    # theta cut is 68 percent containment of the gammas
    # for now with a fixed global, unoptimized score cut
    mask_theta_cuts = gammas["gh_score"] >= INITIAL_GH_CUT
    theta_cuts = calculate_percentile_cut(
        gammas["theta"][mask_theta_cuts],
        gammas["reco_energy"][mask_theta_cuts],
        bins=theta_bins,
        min_value=MIN_THETA_CUT,
        fill_value=MAX_THETA_CUT,
        max_value=MAX_THETA_CUT,
        percentile=68,
    )

    # same number of bins per decade than official CTA IRFs
    sensitivity_bins = add_overflow_bins(
        create_bins_per_decade(MIN_ENERGY, MAX_ENERGY, bins_per_decade=N_BIN_PER_DECADE)
    )

    log.info("Optimizing G/H separation cut for best sensitivity")
    gh_cut_efficiencies = np.arange(
        GH_CUT_EFFICIENCY_STEP,
        MAX_GH_CUT_EFFICIENCY + GH_CUT_EFFICIENCY_STEP / 2,
        GH_CUT_EFFICIENCY_STEP,
    )
    sensitivity_step_2, gh_cuts = optimize_gh_cut(
        gammas,
        background,
        reco_energy_bins=sensitivity_bins,
        gh_cut_efficiencies=gh_cut_efficiencies,
        op=operator.ge,
        theta_cuts=theta_cuts,
        alpha=ALPHA,
        background_radius=MAX_BG_RADIUS,
    )

    # now that we have the optimized gh cuts, we recalculate the theta
    # cut as 68 percent containment on the events surviving these cuts.
    log.info("Recalculating theta cut for optimized GH Cuts")
    for tab in (gammas, background):
        tab["selected_gh"] = evaluate_binned_cut(
            tab["gh_score"], tab["reco_energy"], gh_cuts, operator.ge
        )

    theta_cuts_opt = calculate_percentile_cut(
        gammas[gammas["selected_gh"]]["theta"],
        gammas[gammas["selected_gh"]]["reco_energy"],
        theta_bins,
        percentile=68,
        fill_value=MAX_THETA_CUT,
        max_value=MAX_THETA_CUT,
        min_value=MIN_THETA_CUT,
    )

    gammas["selected_theta"] = evaluate_binned_cut(
        gammas["theta"], gammas["reco_energy"], theta_cuts_opt, operator.le
    )
    gammas["selected"] = gammas["selected_theta"] & gammas["selected_gh"]

    # calculate sensitivity
    signal_hist = create_histogram_table(
        gammas[gammas["selected"]], bins=sensitivity_bins
    )
    background_hist = estimate_background(
        background[background["selected_gh"]],
        reco_energy_bins=sensitivity_bins,
        theta_cuts=theta_cuts_opt,
        alpha=ALPHA,
        background_radius=MAX_BG_RADIUS,
    )
    sensitivity = calculate_sensitivity(signal_hist, background_hist, alpha=ALPHA)

    # scale relative sensitivity by Crab flux to get the flux sensitivity
    spectrum = particles["gamma"]["target_spectrum"]
    for s in (sensitivity_step_2, sensitivity):
        s["flux_sensitivity"] = s["relative_sensitivity"] * spectrum(
            s["reco_energy_center"]
        )

    log.info("Calculating IRFs")
    hdus = [
        fits.PrimaryHDU(),
        fits.BinTableHDU(sensitivity, name="SENSITIVITY"),
        fits.BinTableHDU(sensitivity_step_2, name="SENSITIVITY_STEP_2"),
        fits.BinTableHDU(theta_cuts, name="THETA_CUTS"),
        fits.BinTableHDU(theta_cuts_opt, name="THETA_CUTS_OPT"),
        fits.BinTableHDU(gh_cuts, name="GH_CUTS"),
    ]

    masks = {
        "": gammas["selected"],
        "_NO_CUTS": slice(None),
        "_ONLY_GH": gammas["selected_gh"],
        "_ONLY_THETA": gammas["selected_theta"],
    }

    # binnings for the irfs
    true_energy_bins = add_overflow_bins(
        create_bins_per_decade(MIN_ENERGY, MAX_ENERGY, N_BIN_PER_DECADE)
    )
    reco_energy_bins = add_overflow_bins(
        create_bins_per_decade(MIN_ENERGY, MAX_ENERGY, N_BIN_PER_DECADE)
    )

    fov_offset_bins = [0, 0.6] * u.deg
    source_offset_bins = np.arange(0, 1 + 1e-4, 1e-3) * u.deg
    energy_migration_bins = np.geomspace(0.2, 5, 200)

    for label, mask in masks.items():
        effective_area = effective_area_per_energy(
            gammas[mask],
            particles["gamma"]["simulation_info"],
            true_energy_bins=true_energy_bins,
        )
        hdus.append(
            create_aeff2d_hdu(
                effective_area[..., np.newaxis],  # add one dimension for FOV offset
                true_energy_bins,
                fov_offset_bins,
                extname="EFFECTIVE_AREA" + label,
            )
        )
        edisp = energy_dispersion(
            gammas[mask],
            true_energy_bins=true_energy_bins,
            fov_offset_bins=fov_offset_bins,
            migration_bins=energy_migration_bins,
        )
        hdus.append(
            create_energy_dispersion_hdu(
                edisp,
                true_energy_bins=true_energy_bins,
                migration_bins=energy_migration_bins,
                fov_offset_bins=fov_offset_bins,
                extname="ENERGY_DISPERSION" + label,
            )
        )

    bias_resolution = energy_bias_resolution(
        gammas[gammas["selected"]],
        true_energy_bins,
        resolution_function=energy_resolution_absolute_68,
    )
    ang_res = angular_resolution(gammas[gammas["selected_gh"]], true_energy_bins)
    psf = psf_table(
        gammas[gammas["selected_gh"]],
        true_energy_bins,
        fov_offset_bins=fov_offset_bins,
        source_offset_bins=source_offset_bins,
    )

    background_rate = background_2d(
        background[background["selected_gh"]],
        reco_energy_bins,
        fov_offset_bins=np.arange(0, 11) * u.deg,
        t_obs=T_OBS,
    )

    hdus.append(
        create_background_2d_hdu(
            background_rate, reco_energy_bins, fov_offset_bins=np.arange(0, 11) * u.deg
        )
    )
    hdus.append(
        create_psf_table_hdu(psf, true_energy_bins, source_offset_bins, fov_offset_bins)
    )
    hdus.append(
        create_rad_max_hdu(
            theta_cuts_opt["cut"][:, np.newaxis], theta_bins, fov_offset_bins
        )
    )
    hdus.append(fits.BinTableHDU(ang_res, name="ANGULAR_RESOLUTION"))
    hdus.append(fits.BinTableHDU(bias_resolution, name="ENERGY_BIAS_RESOLUTION"))

    log.info("Writing output file")
    Path(args.outfile).parent.mkdir(exist_ok=True)
    fits.HDUList(hdus).writeto(args.outfile, overwrite=True)
def main():
    logging.basicConfig(level=logging.INFO)
    logging.getLogger("pyirf").setLevel(logging.DEBUG)

    for k, p in particles.items():
        log.info(f"Simulated {k.title()} Events:")
        p["events"], p["simulation_info"] = read_eventdisplay_fits(p["file"])

        p["simulated_spectrum"] = PowerLaw.from_simulation(
            p["simulation_info"], T_OBS)
        p["events"]["weight"] = calculate_event_weights(
            p["events"]["true_energy"], p["target_spectrum"],
            p["simulated_spectrum"])
        p["events"]["source_fov_offset"] = calculate_source_fov_offset(
            p["events"])
        # calculate theta / distance between reco and assuemd source positoin
        # we handle only ON observations here, so the assumed source pos
        # is the pointing position
        p["events"]["theta"] = calculate_theta(
            p["events"],
            assumed_source_az=p["events"]["pointing_az"],
            assumed_source_alt=p["events"]["pointing_alt"],
        )
        log.info(p["simulation_info"])
        log.info("")

    gammas = particles["gamma"]["events"]
    # background table composed of both electrons and protons
    background = table.vstack(
        [particles["proton"]["events"], particles["electron"]["events"]])

    log.info(
        f"Using fixed G/H cut of {INITIAL_GH_CUT} to calculate theta cuts")

    # event display uses much finer bins for the theta cut than
    # for the sensitivity
    theta_bins = add_overflow_bins(
        create_bins_per_decade(
            10**(-1.9) * u.TeV,
            10**2.3005 * u.TeV,
            50,
        ))

    # theta cut is 68 percent containmente of the gammas
    # for now with a fixed global, unoptimized score cut
    mask_theta_cuts = gammas["gh_score"] >= INITIAL_GH_CUT
    theta_cuts = calculate_percentile_cut(
        gammas["theta"][mask_theta_cuts],
        gammas["reco_energy"][mask_theta_cuts],
        bins=theta_bins,
        min_value=0.05 * u.deg,
        fill_value=np.nan * u.deg,
        percentile=68,
    )

    # evaluate the theta cut
    gammas["selected_theta"] = evaluate_binned_cut(gammas["theta"],
                                                   gammas["reco_energy"],
                                                   theta_cuts, operator.le)
    # we make the background region larger by a factor of ALPHA,
    # so the radius by sqrt(ALPHA) to get better statistics for the background
    theta_cuts_bg = get_bg_cuts(theta_cuts, ALPHA)
    background["selected_theta"] = evaluate_binned_cut(
        background["theta"], background["reco_energy"], theta_cuts_bg,
        operator.le)

    # same bins as event display uses
    sensitivity_bins = add_overflow_bins(
        create_bins_per_decade(10**-1.9 * u.TeV,
                               10**2.31 * u.TeV,
                               bins_per_decade=5))

    log.info("Optimizing G/H separation cut for best sensitivity")
    sensitivity_step_2, gh_cuts = optimize_gh_cut(
        gammas[gammas["selected_theta"]],
        background[background["selected_theta"]],
        bins=sensitivity_bins,
        cut_values=np.arange(-1.0, 1.005, 0.05),
        op=operator.ge,
        alpha=ALPHA,
    )

    # now that we have the optimized gh cuts, we recalculate the theta
    # cut as 68 percent containment on the events surviving these cuts.
    for tab in (gammas, background):
        tab["selected_gh"] = evaluate_binned_cut(tab["gh_score"],
                                                 tab["reco_energy"], gh_cuts,
                                                 operator.ge)

    theta_cuts_opt = calculate_percentile_cut(
        gammas["theta"],
        gammas["reco_energy"],
        theta_bins,
        fill_value=np.nan * u.deg,
        percentile=68,
        min_value=0.05 * u.deg,
    )

    theta_cuts_opt_bg = get_bg_cuts(theta_cuts_opt, ALPHA)

    for tab, cuts in zip([gammas, background],
                         [theta_cuts_opt, theta_cuts_opt_bg]):
        tab["selected_theta"] = evaluate_binned_cut(tab["theta"],
                                                    tab["reco_energy"], cuts,
                                                    operator.le)
        tab["selected"] = tab["selected_theta"] & tab["selected_gh"]

    signal_hist = create_histogram_table(gammas[gammas["selected"]],
                                         bins=sensitivity_bins)
    background_hist = create_histogram_table(
        background[background["selected"]], bins=sensitivity_bins)

    sensitivity = calculate_sensitivity(signal_hist,
                                        background_hist,
                                        alpha=ALPHA)

    # scale relative sensitivity by Crab flux to get the flux sensitivity
    for s in (sensitivity_step_2, sensitivity):
        s["flux_sensitivity"] = s["relative_sensitivity"] * CRAB_HEGRA(
            s["reco_energy_center"])

    # write OGADF output file
    hdus = [
        fits.PrimaryHDU(),
        fits.BinTableHDU(sensitivity, name="SENSITIVITY"),
        fits.BinTableHDU(sensitivity_step_2, name="SENSITIVITY_STEP_2"),
        fits.BinTableHDU(theta_cuts, name="THETA_CUTS"),
        fits.BinTableHDU(theta_cuts_opt, name="THETA_CUTS_OPT"),
        fits.BinTableHDU(gh_cuts, name="GH_CUTS"),
    ]

    masks = {
        "": gammas["selected"],
        "_NO_CUTS": slice(None),
        "_ONLY_GH": gammas["selected_gh"],
        "_ONLY_THETA": gammas["selected_theta"],
    }

    # binnings for the irfs
    true_energy_bins = add_overflow_bins(
        create_bins_per_decade(
            10**-1.9 * u.TeV,
            10**2.31 * u.TeV,
            10,
        ))
    reco_energy_bins = add_overflow_bins(
        create_bins_per_decade(
            10**-1.9 * u.TeV,
            10**2.31 * u.TeV,
            10,
        ))
    fov_offset_bins = [0, 0.5] * u.deg
    source_offset_bins = np.arange(0, 1 + 1e-4, 1e-3) * u.deg
    energy_migration_bins = np.geomspace(0.2, 5, 200)

    for label, mask in masks.items():
        effective_area = point_like_effective_area(
            gammas[mask],
            particles["gamma"]["simulation_info"],
            true_energy_bins=true_energy_bins,
        )
        hdus.append(
            create_aeff2d_hdu(
                effective_area[...,
                               np.newaxis],  # add one dimension for FOV offset
                true_energy_bins,
                fov_offset_bins,
                extname="EFFECTIVE_AREA" + label,
            ))
        edisp = energy_dispersion(
            gammas[mask],
            true_energy_bins=true_energy_bins,
            fov_offset_bins=fov_offset_bins,
            migration_bins=energy_migration_bins,
        )
        hdus.append(
            create_energy_dispersion_hdu(
                edisp,
                true_energy_bins=true_energy_bins,
                migration_bins=energy_migration_bins,
                fov_offset_bins=fov_offset_bins,
                extname="ENERGY_DISPERSION" + label,
            ))

    bias_resolution = energy_bias_resolution(
        gammas[gammas["selected"]],
        true_energy_bins,
    )
    ang_res = angular_resolution(
        gammas[gammas["selected_gh"]],
        true_energy_bins,
    )
    psf = psf_table(
        gammas[gammas["selected_gh"]],
        true_energy_bins,
        fov_offset_bins=fov_offset_bins,
        source_offset_bins=source_offset_bins,
    )

    background_rate = background_2d(
        background[background['selected_gh']],
        reco_energy_bins,
        fov_offset_bins=np.arange(0, 11) * u.deg,
        t_obs=T_OBS,
    )

    hdus.append(
        create_background_2d_hdu(
            background_rate,
            reco_energy_bins,
            fov_offset_bins=np.arange(0, 11) * u.deg,
        ))
    hdus.append(
        create_psf_table_hdu(
            psf,
            true_energy_bins,
            source_offset_bins,
            fov_offset_bins,
        ))
    hdus.append(
        create_rad_max_hdu(theta_bins,
                           fov_offset_bins,
                           rad_max=theta_cuts_opt["cut"][:, np.newaxis]))
    hdus.append(fits.BinTableHDU(ang_res, name="ANGULAR_RESOLUTION"))
    hdus.append(
        fits.BinTableHDU(bias_resolution, name="ENERGY_BIAS_RESOLUTION"))
    fits.HDUList(hdus).writeto("pyirf_eventdisplay.fits.gz", overwrite=True)
def main():
    logging.basicConfig(level=logging.INFO)
    logging.getLogger("pyirf").setLevel(logging.DEBUG)

    for particle_type, p in particles.items():
        log.info(f"Simulated {particle_type.title()} Events:")
        p["events"], p["simulation_info"] = read_eventdisplay_fits(p["file"])
        p["events"]["particle_type"] = particle_type

        p["simulated_spectrum"] = PowerLaw.from_simulation(
            p["simulation_info"], T_OBS)
        p["events"]["weight"] = calculate_event_weights(
            p["events"]["true_energy"], p["target_spectrum"],
            p["simulated_spectrum"])
        for prefix in ('true', 'reco'):
            k = f"{prefix}_source_fov_offset"
            p["events"][k] = calculate_source_fov_offset(p["events"],
                                                         prefix=prefix)

        # calculate theta / distance between reco and assuemd source positoin
        # we handle only ON observations here, so the assumed source pos
        # is the pointing position
        p["events"]["theta"] = calculate_theta(
            p["events"],
            assumed_source_az=p["events"]["pointing_az"],
            assumed_source_alt=p["events"]["pointing_alt"],
        )
        log.info(p["simulation_info"])
        log.info("")

    gammas = particles["gamma"]["events"]
    # background table composed of both electrons and protons
    background = table.vstack(
        [particles["proton"]["events"], particles["electron"]["events"]])

    INITIAL_GH_CUT = np.quantile(gammas['gh_score'],
                                 (1 - INITIAL_GH_CUT_EFFICENCY))
    log.info(
        f"Using fixed G/H cut of {INITIAL_GH_CUT} to calculate theta cuts")

    # event display uses much finer bins for the theta cut than
    # for the sensitivity
    theta_bins = add_overflow_bins(
        create_bins_per_decade(10**(-1.9) * u.TeV, 10**2.3005 * u.TeV, 50))
    # same bins as event display uses
    sensitivity_bins = add_overflow_bins(
        create_bins_per_decade(10**-1.9 * u.TeV,
                               10**2.31 * u.TeV,
                               bins_per_decade=5))

    # theta cut is 68 percent containmente of the gammas
    # for now with a fixed global, unoptimized score cut
    # the cut is calculated in the same bins as the sensitivity,
    # but then interpolated to 10x the resolution.
    mask_theta_cuts = gammas["gh_score"] >= INITIAL_GH_CUT
    theta_cuts_coarse = calculate_percentile_cut(
        gammas["theta"][mask_theta_cuts],
        gammas["reco_energy"][mask_theta_cuts],
        bins=sensitivity_bins,
        min_value=0.05 * u.deg,
        fill_value=0.32 * u.deg,
        max_value=0.32 * u.deg,
        percentile=68,
    )

    # interpolate to 50 bins per decade
    theta_center = bin_center(theta_bins)
    inter_center = bin_center(sensitivity_bins)
    theta_cuts = table.QTable({
        "low":
        theta_bins[:-1],
        "high":
        theta_bins[1:],
        "center":
        theta_center,
        "cut":
        np.interp(np.log10(theta_center / u.TeV),
                  np.log10(inter_center / u.TeV), theta_cuts_coarse['cut']),
    })

    log.info("Optimizing G/H separation cut for best sensitivity")
    gh_cut_efficiencies = np.arange(
        GH_CUT_EFFICIENCY_STEP,
        MAX_GH_CUT_EFFICIENCY + GH_CUT_EFFICIENCY_STEP / 2,
        GH_CUT_EFFICIENCY_STEP)
    sensitivity, gh_cuts = optimize_gh_cut(
        gammas,
        background,
        reco_energy_bins=sensitivity_bins,
        gh_cut_efficiencies=gh_cut_efficiencies,
        op=operator.ge,
        theta_cuts=theta_cuts,
        alpha=ALPHA,
        background_radius=MAX_BG_RADIUS,
    )

    # now that we have the optimized gh cuts, we recalculate the theta
    # cut as 68 percent containment on the events surviving these cuts.
    log.info('Recalculating theta cut for optimized GH Cuts')
    for tab in (gammas, background):
        tab["selected_gh"] = evaluate_binned_cut(tab["gh_score"],
                                                 tab["reco_energy"], gh_cuts,
                                                 operator.ge)

    gammas["selected_theta"] = evaluate_binned_cut(gammas["theta"],
                                                   gammas["reco_energy"],
                                                   theta_cuts, operator.le)
    gammas["selected"] = gammas["selected_theta"] & gammas["selected_gh"]

    # scale relative sensitivity by Crab flux to get the flux sensitivity
    spectrum = particles['gamma']['target_spectrum']
    sensitivity["flux_sensitivity"] = (
        sensitivity["relative_sensitivity"] *
        spectrum(sensitivity['reco_energy_center']))

    log.info('Calculating IRFs')
    hdus = [
        fits.PrimaryHDU(),
        fits.BinTableHDU(sensitivity, name="SENSITIVITY"),
        fits.BinTableHDU(theta_cuts, name="THETA_CUTS"),
        fits.BinTableHDU(gh_cuts, name="GH_CUTS"),
    ]

    masks = {
        "": gammas["selected"],
        "_NO_CUTS": slice(None),
        "_ONLY_GH": gammas["selected_gh"],
        "_ONLY_THETA": gammas["selected_theta"],
    }

    # binnings for the irfs
    true_energy_bins = add_overflow_bins(
        create_bins_per_decade(10**-1.9 * u.TeV, 10**2.31 * u.TeV, 10))
    reco_energy_bins = add_overflow_bins(
        create_bins_per_decade(10**-1.9 * u.TeV, 10**2.31 * u.TeV, 5))
    fov_offset_bins = [0, 0.5] * u.deg
    source_offset_bins = np.arange(0, 1 + 1e-4, 1e-3) * u.deg
    energy_migration_bins = np.geomspace(0.2, 5, 200)

    for label, mask in masks.items():
        effective_area = effective_area_per_energy(
            gammas[mask],
            particles["gamma"]["simulation_info"],
            true_energy_bins=true_energy_bins,
        )
        hdus.append(
            create_aeff2d_hdu(
                effective_area[...,
                               np.newaxis],  # add one dimension for FOV offset
                true_energy_bins,
                fov_offset_bins,
                extname="EFFECTIVE_AREA" + label,
            ))
        edisp = energy_dispersion(
            gammas[mask],
            true_energy_bins=true_energy_bins,
            fov_offset_bins=fov_offset_bins,
            migration_bins=energy_migration_bins,
        )
        hdus.append(
            create_energy_dispersion_hdu(
                edisp,
                true_energy_bins=true_energy_bins,
                migration_bins=energy_migration_bins,
                fov_offset_bins=fov_offset_bins,
                extname="ENERGY_DISPERSION" + label,
            ))

    bias_resolution = energy_bias_resolution(gammas[gammas["selected"]],
                                             reco_energy_bins,
                                             energy_type="reco")
    ang_res = angular_resolution(gammas[gammas["selected_gh"]],
                                 reco_energy_bins,
                                 energy_type="reco")
    psf = psf_table(
        gammas[gammas["selected_gh"]],
        true_energy_bins,
        fov_offset_bins=fov_offset_bins,
        source_offset_bins=source_offset_bins,
    )

    background_rate = background_2d(
        background[background['selected_gh']],
        reco_energy_bins,
        fov_offset_bins=np.arange(0, 11) * u.deg,
        t_obs=T_OBS,
    )

    hdus.append(
        create_background_2d_hdu(
            background_rate,
            reco_energy_bins,
            fov_offset_bins=np.arange(0, 11) * u.deg,
        ))
    hdus.append(
        create_psf_table_hdu(
            psf,
            true_energy_bins,
            source_offset_bins,
            fov_offset_bins,
        ))
    hdus.append(
        create_rad_max_hdu(theta_cuts["cut"][:, np.newaxis], theta_bins,
                           fov_offset_bins))
    hdus.append(fits.BinTableHDU(ang_res, name="ANGULAR_RESOLUTION"))
    hdus.append(
        fits.BinTableHDU(bias_resolution, name="ENERGY_BIAS_RESOLUTION"))

    log.info('Writing outputfile')
    fits.HDUList(hdus).writeto("pyirf_eventdisplay.fits.gz", overwrite=True)
Esempio n. 7
0
def main(gammafile, protonfile, electronfile, outputfile):
    logging.basicConfig(level=logging.INFO)
    logging.getLogger("pyirf").setLevel(logging.DEBUG)

    particles = {
        "gamma": {
            "file": gammafile,
            "target_spectrum": CRAB_HEGRA,
        },
        "proton": {
            "file": protonfile,
            "target_spectrum": IRFDOC_PROTON_SPECTRUM,
        },
        "electron": {
            "file": electronfile,
            "target_spectrum": IRFDOC_ELECTRON_SPECTRUM,
        },
    }

    for particle_type, p in particles.items():
        log.info(f"Simulated {particle_type.title()} Events:")
        p["events"], p["simulation_info"] = read_file(p["file"])
        p["events"]["particle_type"] = particle_type

        p["simulated_spectrum"] = PowerLaw.from_simulation(
            p["simulation_info"], T_OBS)
        p["events"]["weight"] = calculate_event_weights(
            p["events"]["true_energy"], p["target_spectrum"],
            p["simulated_spectrum"])
        for prefix in ('true', 'reco'):
            k = f"{prefix}_source_fov_offset"
            p["events"][k] = calculate_source_fov_offset(p["events"],
                                                         prefix=prefix)

        log.info(p["simulation_info"])
        log.info("")

    gammas = particles["gamma"]["events"]
    background = table.vstack(
        [particles["proton"]["events"], particles["electron"]["events"]])

    # calculate theta / distance between reco and assuemd source position
    gammas["theta"] = calculate_theta(
        gammas,
        assumed_source_az=gammas["true_az"],
        assumed_source_alt=gammas["true_alt"],
    )

    INITIAL_GH_CUT = np.quantile(gammas['gh_score'],
                                 (1 - INITIAL_GH_CUT_EFFICENCY))
    log.info(
        f"Using fixed G/H cut of {INITIAL_GH_CUT} to calculate theta cuts")

    theta_bins = add_overflow_bins(
        create_bins_per_decade(10**-1.8 * u.TeV,
                               10**2.41 * u.TeV,
                               bins_per_decade=25))
    sensitivity_bins = add_overflow_bins(
        create_bins_per_decade(10**-1.8 * u.TeV,
                               10**2.41 * u.TeV,
                               bins_per_decade=5))

    # theta cut is 68 percent containmente of the gammas
    # for now with a fixed global, unoptimized score cut
    mask_theta_cuts = gammas["gh_score"] >= INITIAL_GH_CUT
    theta_cuts = calculate_percentile_cut(
        gammas["theta"][mask_theta_cuts],
        gammas["reco_energy"][mask_theta_cuts],
        bins=theta_bins,
        min_value=0.05 * u.deg,
        fill_value=0.32 * u.deg,
        max_value=0.32 * u.deg,
        percentile=68,
    )

    log.info("Optimizing G/H separation cut for best sensitivity")
    gh_cut_efficiencies = np.arange(
        GH_CUT_EFFICIENCY_STEP,
        MAX_GH_CUT_EFFICIENCY + GH_CUT_EFFICIENCY_STEP / 2,
        GH_CUT_EFFICIENCY_STEP)
    sensitivity_step_2, gh_cuts = optimize_gh_cut(
        gammas,
        background,
        reco_energy_bins=sensitivity_bins,
        gh_cut_efficiencies=gh_cut_efficiencies,
        op=operator.ge,
        theta_cuts=theta_cuts,
        alpha=ALPHA,
        background_radius=MAX_BG_RADIUS,
    )

    # now that we have the optimized gh cuts, we recalculate the theta
    # cut as 68 percent containment on the events surviving these cuts.
    log.info('Recalculating theta cut for optimized GH Cuts')
    for tab in (gammas, background):
        tab["selected_gh"] = evaluate_binned_cut(tab["gh_score"],
                                                 tab["reco_energy"], gh_cuts,
                                                 operator.ge)

    theta_cuts_opt = calculate_percentile_cut(
        gammas[gammas['selected_gh']]["theta"],
        gammas[gammas['selected_gh']]["reco_energy"],
        theta_bins,
        percentile=68,
        fill_value=0.32 * u.deg,
        max_value=0.32 * u.deg,
        min_value=0.05 * u.deg,
    )

    gammas["selected_theta"] = evaluate_binned_cut(gammas["theta"],
                                                   gammas["reco_energy"],
                                                   theta_cuts_opt, operator.le)
    gammas["selected"] = gammas["selected_theta"] & gammas["selected_gh"]

    # calculate sensitivity
    signal_hist = create_histogram_table(gammas[gammas["selected"]],
                                         bins=sensitivity_bins)
    background_hist = estimate_background(
        background[background["selected_gh"]],
        reco_energy_bins=sensitivity_bins,
        theta_cuts=theta_cuts_opt,
        alpha=ALPHA,
        background_radius=MAX_BG_RADIUS,
    )
    sensitivity = calculate_sensitivity(signal_hist,
                                        background_hist,
                                        alpha=ALPHA)

    # scale relative sensitivity by Crab flux to get the flux sensitivity
    spectrum = particles['gamma']['target_spectrum']
    for s in (sensitivity_step_2, sensitivity):
        s["flux_sensitivity"] = (s["relative_sensitivity"] *
                                 spectrum(s['reco_energy_center']))

    hdus = [
        fits.PrimaryHDU(),
        fits.BinTableHDU(sensitivity, name="SENSITIVITY"),
        fits.BinTableHDU(sensitivity_step_2, name="SENSITIVITY_STEP_2"),
        fits.BinTableHDU(theta_cuts, name="THETA_CUTS"),
        fits.BinTableHDU(theta_cuts_opt, name="THETA_CUTS_OPT"),
        fits.BinTableHDU(gh_cuts, name="GH_CUTS"),
    ]

    # calculate sensitivity using unoptimised cuts
    gammas["theta_unop"] = gammas["theta"].to_value(u.deg) <= np.sqrt(0.03)
    gammas["gh_unop"] = gammas["gh_score"] > 0.85

    theta_cut_unop = table.QTable()
    theta_cut_unop['low'] = theta_cuts_opt['low']
    theta_cut_unop['high'] = theta_cuts_opt['high']
    theta_cut_unop['center'] = theta_cuts_opt['center']
    theta_cut_unop['cut'] = np.sqrt(0.03) * u.deg

    signal_hist_unop = create_histogram_table(gammas[gammas["theta_unop"]
                                                     & gammas["gh_unop"]],
                                              bins=sensitivity_bins)
    background_hist_unop = estimate_background(
        background[background["gh_score"] > 0.85],
        reco_energy_bins=sensitivity_bins,
        theta_cuts=theta_cut_unop,
        alpha=ALPHA,
        background_radius=MAX_BG_RADIUS,
    )
    sensitivity_unop = calculate_sensitivity(signal_hist_unop,
                                             background_hist_unop,
                                             alpha=ALPHA)
    sensitivity_unop["flux_sensitivity"] = (
        sensitivity_unop["relative_sensitivity"] *
        spectrum(sensitivity_unop['reco_energy_center']))
    hdus.append(fits.BinTableHDU(sensitivity_unop, name="SENSITIVITY_UNOP"))

    log.info('Calculating IRFs')
    masks = {
        "": gammas["selected"],
        "_NO_CUTS": slice(None),
        "_ONLY_GH": gammas["selected_gh"],
        "_ONLY_THETA": gammas["selected_theta"],
    }

    # binnings for the irfs
    true_energy_bins = add_overflow_bins(
        create_bins_per_decade(10**-1.8 * u.TeV,
                               10**2.41 * u.TeV,
                               bins_per_decade=10))
    reco_energy_bins = add_overflow_bins(
        create_bins_per_decade(10**-1.8 * u.TeV,
                               10**2.41 * u.TeV,
                               bins_per_decade=5))
    fov_offset_bins = [0, 0.5] * u.deg
    source_offset_bins = np.arange(0, 1 + 1e-4, 1e-3) * u.deg
    energy_migration_bins = np.geomspace(0.2, 5, 200)

    for label, mask in masks.items():
        effective_area = effective_area_per_energy(
            gammas[mask],
            particles["gamma"]["simulation_info"],
            true_energy_bins=true_energy_bins,
        )
        hdus.append(
            create_aeff2d_hdu(
                effective_area[...,
                               np.newaxis],  # add one dimension for FOV offset
                true_energy_bins,
                fov_offset_bins,
                extname="EFFECTIVE_AREA" + label,
            ))
        edisp = energy_dispersion(
            gammas[mask],
            true_energy_bins=true_energy_bins,
            fov_offset_bins=fov_offset_bins,
            migration_bins=energy_migration_bins,
        )
        hdus.append(
            create_energy_dispersion_hdu(
                edisp,
                true_energy_bins=true_energy_bins,
                migration_bins=energy_migration_bins,
                fov_offset_bins=fov_offset_bins,
                extname="ENERGY_DISPERSION" + label,
            ))

    bias_resolution = energy_bias_resolution(
        gammas[gammas["selected"]],
        true_energy_bins,
    )
    ang_res = angular_resolution(
        gammas[gammas["selected_gh"]],
        true_energy_bins,
    )
    psf = psf_table(
        gammas[gammas["selected_gh"]],
        true_energy_bins,
        fov_offset_bins=fov_offset_bins,
        source_offset_bins=source_offset_bins,
    )
    background_rate = background_2d(
        background[background['selected_gh']],
        reco_energy_bins,
        fov_offset_bins=np.arange(0, 11) * u.deg,
        t_obs=T_OBS,
    )

    hdus.append(
        create_background_2d_hdu(
            background_rate,
            reco_energy_bins,
            fov_offset_bins=np.arange(0, 11) * u.deg,
        ))
    hdus.append(
        create_psf_table_hdu(
            psf,
            true_energy_bins,
            source_offset_bins,
            fov_offset_bins,
        ))
    hdus.append(
        create_rad_max_hdu(theta_cuts_opt["cut"][:, np.newaxis], theta_bins,
                           fov_offset_bins))
    hdus.append(fits.BinTableHDU(ang_res, name="ANGULAR_RESOLUTION"))
    hdus.append(
        fits.BinTableHDU(bias_resolution, name="ENERGY_BIAS_RESOLUTION"))

    log.info('Writing outputfile')
    fits.HDUList(hdus).writeto(outputfile, overwrite=True)