def create_micromodel(self): pred_index = _to_cpp_array_int(self.prediction_column) cond_index= _to_cpp_array_int(self.conditional_column) self._saved_model = _IscMarkovGaussMicroModel(pred_index, len(self.prediction_column), cond_index, len(self.conditional_column)) pyisc._free_array_int(pred_index) pyisc._free_array_int(cond_index) return self._saved_model
def create_micromodel(self): pred_index = _to_cpp_array_int(self.prediction_column) cond_index = _to_cpp_array_int(self.conditional_column) self._saved_model = _IscMarkovGaussMicroModel( pred_index, len(self.prediction_column), cond_index, len(self.conditional_column)) pyisc._free_array_int(pred_index) pyisc._free_array_int(cond_index) return self._saved_model
def _anomaly_score_intfloat(self, x_intfloat, length, data_object): deviations = pyisc._double_array(self.num_of_partitions) min = pyisc._intfloat_array(length) max = pyisc._intfloat_array(length) peak = pyisc._intfloat_array(length) anom = pyisc._double_array(1) cla = pyisc._int_array(1) clu = pyisc._int_array(1) self._anomaly_detector._CalcAnomalyDetails(x_intfloat,anom, cla, clu, deviations, peak, min, max) if self.is_clustering and self.class_column > -1: result = [pyisc._get_double_value(anom,0), pyisc._get_int_value(cla,0), pyisc._get_int_value(clu,0), list(pyisc._to_numpy_array(deviations,self.num_of_partitions)), list(data_object._convert_to_numpyarray(peak, length)), list(data_object._convert_to_numpyarray(min, length)), list(data_object._convert_to_numpyarray(max, length))] elif self.is_clustering: result = [pyisc._get_double_value(anom,0), pyisc._get_int_value(clu,0), list(pyisc._to_numpy_array(deviations,self.num_of_partitions)), list(data_object._convert_to_numpyarray(peak, length)), list(data_object._convert_to_numpyarray(min, length)), list(data_object._convert_to_numpyarray(max, length))] elif self.class_column > -1: result = [pyisc._get_double_value(anom,0), pyisc._get_int_value(cla,0), list(pyisc._to_numpy_array(deviations,self.num_of_partitions)), list(data_object._convert_to_numpyarray(peak, length)), list(data_object._convert_to_numpyarray(min, length)), list(data_object._convert_to_numpyarray(max, length))] else: result = [pyisc._get_double_value(anom,0), list(pyisc._to_numpy_array(deviations,self.num_of_partitions)), list(data_object._convert_to_numpyarray(peak, length)), list(data_object._convert_to_numpyarray(min, length)), list(data_object._convert_to_numpyarray(max, length))] pyisc._free_array_double(deviations); pyisc._free_array_intfloat(min) pyisc._free_array_intfloat(max) pyisc._free_array_intfloat(peak) pyisc._free_array_double(anom) pyisc._free_array_int(cla) pyisc._free_array_int(clu) return result
def create_micromodel(self): column_array = _to_cpp_array_int(self.column_index) self._saved_model = _IscMultiGaussianMicroModel(len(self.column_index), column_array) pyisc._free_array_int(column_array) return self._saved_model
def create_micromodel(self): value_array = _to_cpp_array_int(self.value_columns) self._saved_model = _IscMarkovGaussMatrixMicroModel(value_array, len(self.value_columns), self.slots_per_row) pyisc._free_array_int(value_array) return self._saved_model
def create_micromodel(self): column_array = _to_cpp_array_int(self.column_index) self._saved_model = _IscMultiGaussianMicroModel( len(self.column_index), column_array) pyisc._free_array_int(column_array) return self._saved_model
def create_micromodel(self): value_array = _to_cpp_array_int(self.value_columns) self._saved_model = _IscMarkovGaussMatrixMicroModel( value_array, len(self.value_columns), self.slots_per_row) pyisc._free_array_int(value_array) return self._saved_model